Hard Science und Haute Cuisine

Molekulargastronomen jonglieren mit Proteinen und Polymeren

18. Februar 2004

Ein Physiker am Mainzer Max-Planck-Institut für Polymerforschung verbindet seine Forschung an Weicher Materie elegant mit Kochen als Wissenschaft. Bei dem "Molekulargastronom" Thomas A. Vilgis wird deshalb die Küche zum Labor. Vilgis besucht und beschreibt was passiert, wenn "Hard Science" auf "Haute Cuisine" trifft.

Warum wird Fleisch durch Garen zart, aber durch zu langes Erhitzen zur zähen Schuhsohle? Was passiert beim Schlagen von Eischnee oder dem Klären von Butter? Mit solchen Fragen zur Chemie und Physik der Braten, Saucen oder Puddings beschäftigen sich Wissenschaftler, die sich "Molekulargastronomen" nennen. Thomas Vilgis zählt sich zu ihnen. Hauptamtlich erforscht er am Max-Planck-Institut für Polymerforschung in Mainz die Eigenschaften von Polymeren, Biopolymeren und die komplexen Materialien, die diese aufbauen können.

Emulsionen, Suspensionen, Schäume, Gele, biologische Membranen oder Fasern bestehen aus sehr großen Molekülen. Diese Moleküle, oft Polymere, beeinflussen sich gegenseitig über viele Größenskalen hinweg: Sie reichen von Nanometern (milliardstel Meter) bis zu Mikro- oder sogar Millimetern. Das verleiht allen diesen Materialien komplexe und zugleich charakteristische Eigenschaften. Deshalb fassen Wissenschaftler sie heute unter dem Oberbegriff "Weiche Materie" zusammen, der für ein vielseitiges und sehr dynamisches Forschungsfeld steht. Zur Weichen Materie gehören alle biologischen Materialien - außer den Biomineralien in Knochen und Zähnen - und damit auch alles, was wir essen.

Ein interessanter Zugang zum Kochen ergibt sich zum Beispiel aus der Perspektive der Proteine, also der Eiweiße. Diese Biopolymere sind große Moleküle, die aus Tausenden von Atomen bestehen. In lebenden Organismen spielen sie in praktisch allen biochemischen Prozessen eine zentrale Rolle. Entscheidend ist dabei, dass diese Moleküle ihre Gestalt ändern können - und damit auch ihre biologische Funktionsweise: Manche Proteine können etwa zwischen einer blattartig gefalteten Gestalt und einer schraubenförmigen Helix umschalten. Solche Vorgänge lösen nach heutigem Wissen sogar Gehirnerkrankungen wie BSE aus.

Thomas A. Vilgis und seine Mitarbeiter entwickeln neue mathematische Modelle, um zum Beispiel die Wirkungsweise von Antikörpern und Enzymen besser zu verstehen. Enzyme beschleunigen als Katalysatoren biochemische Reaktionen im Organismus, was viele Lebensfunktionen erst ermöglicht. Bestimmte Enzyme können aber auch beim Kochen helfen, beispielsweise als "Fleischzartmacher". Damit biologisches Gewebe fest und zugleich elastisch ist, durchziehen es Fasern aus Collagen. Diese Biopolymer-Fasern bestehen aus einer sehr stabilen molekularen Dreifachhelix - was aber das rohe Fleisch zäh macht. Das Erhitzen oder das Einwirken bestimmter Enzyme, zum Beispiel aus dem Saft frischer Ananas oder Feigen, kann das Collagen umwandeln: Die Dreifachhelices lösen sich auf und die Polymere verknüpfen sich zu einem losen räumlichen Netzwerk. Dabei entsteht ein Gel, das Fleisch wird zart.

Die Küche bietet unterschiedliche komplexe Materialien - und damit viel Futter für die wissenschaftliche Neugier von Molekulargastronomen. Hoch interessant sind zum Beispiel Grenzflächen: In Nahrungsmitteln bestehen sie meist aus einer nur wenige Nanometer dünnen Schicht geordneter Proteine. Solche Schichten können zum Beispiel Wasser und Fetttröpfchen miteinander verbinden, die sich sonst abstoßen. Dabei entstehen Emulsionen wie Milch und Butter. Molekulare Grenzflächen verleihen auch den Luftbläschen in Schäumen ausreichend Stabilität. Dazu müssen erst die Proteinmoleküle, die im Eiklar als Knäuel vorliegen, "ausgewickelt" werden: Das besorgt das Schlagen mit dem Schneebesen. Dabei wird aus dem transparenten Eiklar undurchsichtiges Eiweiß. Die veränderten Proteinmoleküle können nun die Wassermoleküle des Eis in feinen, sandwichartigen Membranen einschließen. Diese Membranen legen sich als stabile Hüllen um die Luftbläschen des Eischaums. Es verblüfft, dass ein so grobes Gerät wie ein Schneebesen die Gestalt von nur wenigen Nanometer kleinen Molekülen verändern kann. Die Nanotechnik hat also in der Küche eine lange Tradition!

Zur Redakteursansicht