Pflanzensamen schützen ihr Erbgut vor Austrocknung
Wenn Samen der Ackerschmalwand Arabidopsis thaliana reifen, schrumpfen ihre Zellkerne und das Chromatin kondensiert
Die Samen von Pflanzen sind ein besonders biologisches System: Sie ruhen mit einem deutlich reduzierten Stoffwechsel, womit sie harschen Umweltbedingungen lange Zeit widerstehen können. In reifenden Samen beläuft sich der Wassergehalt auf unter zehn Prozent. Forscher des Max-Planck-Instituts für Pflanzenzüchtungsforschung in Köln haben nun herausgefunden, dass das Erbgut kompakter wird und die Zellkerne der Samenzellen schrumpfen, wenn die Reifung der Samen beginnt. Dadurch schützen die Samen ihre Erbsubstanz wahrscheinlich vor Austrocknung.
Mit der Entwicklung von ruhenden Samen sind Pflanzen bestens auf wechselnde Umweltbedingungen vorbereitet. So können beispielsweise im Herbst gereifte Samen problemlos den harschen Bedingungen des Winters trotzen. Doch treffen die Samen im Frühjahr auf angenehme äußere Verhältnisse, keimen sie und fahren ihren mit halber Kraft laufenden Stoffwechsel wieder hoch. Bei archäologischen Ausgrabungen wurden sogar Samen gefunden, die einige Tausend Jahre überdauert haben und noch immer gedeihen konnten.
Trockene Samen sind ein Übergangsstadium zwischen Embryo und Keimling. In solchen Phasen müssen die das neue Stadium kontrollierenden Gene aktiviert werden, während Gene für das „alte“ Stadium stillgelegt werden. Die Gene im Zellkern sind von Proteinen umgeben. Dieser Komplex – das Chromatin – kann mehr oder weniger dicht gepackt sein. Der Grad der Kompaktheit reguliert die Aktivität der Gene: je „offener“ das Chromatin, desto besser die Gene abgelesen werden.
Ob der auf Sparflamme laufende Stoffwechsel oder der geringe Wassergehalt von Samen mit Veränderungen des Chromatins einhergehen, war bislang unklar. Das Team um Wim Soppe vom Max-Planck-Institut für Pflanzenzüchtungsforschung hat jetzt in Studien mit der Ackerschmalwand gezeigt, dass die Zellkerne während der Samenreifung deutlich schrumpfen und sich dabei auch das Chromatin zusammenknäult. Beide Prozesse kehren sich bei der Keimung um. „Die Größe des Zellkerns ist unabhängig vom Ruhezustand der Samen von Arabidopsis thaliana“, sagt Soppe. Vielmehr ist die Verkleinerung des Zellkerns ein aktiver Prozess, um die Resistenz gegenüber Trockenheit zu erhöhen. Die Kondensation des Chromatins wiederum erfolgt unabhängig von den Veränderungen des Zellkerns.
Durch die Erkenntnisse der Kölner Forscher könnten vielleicht auch andere Organismen vor Austrocknung geschützt werden. Denn die Mechanismen, die die Organisation des Chromatins regulieren, haben sich in der Evolution der Lebewesen kaum geändert.
KW/HR