Research report 2007 - Max Planck Institute for Physics

The ATLAS experiment

Andricek, L., Bangert, A., Barillari, T., Benekos, N., Beimforde, M., Bethke, S., Dedes, G., Dubbert, J., Ehrich, Th., Ghodbane, N., Giovannini, P., Göttfert, T., Groh, M., Härtel, R., Horvat, S., Jantsch. A., Kaiser, St., Kiryunin, A., Kluth, S.,; Kortner, O., Kotov, S., Kroha, H., Legger, F., Löben, J.v., Macchilo, A. Moordieck-Möck, S., Moser, H.-G., Menke, S., Nisius, R., Oberlack, H., D'Orazio, A., Patarai, S., Pospelov, G., Potrap, I., Rauter, E., Rebuzzi, D., Richter, R., Richter, R.H.,; Salihagic, D., Schacht, P., Schieck, J., von der Schmitt, H., Stonjek, S., Valderanis, Ch., Yuan, J. Zhuang, X., Zhuravlov, V.
Atlas is one of two general-purpose detectors designed to exploit the full discovery potential of proton-proton collisions at 14 TeV center-of-mass energy of the Large Hadron Collider at CERN/Geneva. High luminosity as well as high energy are the outstanding requirements to study rare processes. In consequence, the detector has to cope with rather difficult design goals. The origin of mass in the standard model, and thus the search for the Higgs boson, is the most prominent issue in particle physics. A major focus is also the super-symmetric extension of the standard model, manifested in a symmetry between fermions and bosons. The institute is involved in the design, construction and integration of major parts of the detector. With the start of data-taking foreseen for 2008, the preparation of the analysis program is an important focus in the ongoing activities of the institute.

For the full text, see the German version.

Go to Editor View