
Entry point for cyber-
criminals: software
generally has security
vulnerabilities. The
automated testing
procedure developed
by a Max Planck team
effectively and efficiently
checks programs for
them.

ILLUSTR ATION: A LESSA N DRO G OT TA R DO

26

Max Planck Research · 1 | 2023

FOCUS

TEXT:
THOMAS BRANDSTETTER

PROGRAM
VULNERABILITIES

Attacks on software not only create billions of dollars
in damage, but also threaten the privacy of users.

Cybercriminals infiltrate programs through security
holes. Marcel Böhme and his team at the Max Planck

Institute for Security and Privacy have undertaken
the task of closing entry points to attackers – and
their approach has even caught the attention of

 companies such as Google.

27

Max Planck Research · 1 | 2023

FOCUS

Programming is a creative process. It starts with a pro-
grammer having an idea to implement a desired feature
and ends with working code. But it is by no means cer-
tain what will work. The devil is often in the detail, and
it can prove to be a serious threat. The Heartbleed bug,
for example, which resulted in access data to numerous
online services being made public in 2014, was based
on a security vulnerability in software with a very
straightforward task: the small program was called
Heartbeat and was designed to solve the problem of a
browser sometimes continuing to send encrypted data
when surfing the internet or banking online via a se-
cure connection, even though the protected connec-
tion had long since been terminated. Heartbeat makes
it possible for the browser to ask the server whether the
connection is still secure. To do this, the software reg-
ularly sends a string of characters, including the num-
ber of those characters, to the server and expects the
same string of characters as a reply.
The developer of course assumed
that the browser would always give
the correct number of characters.
But counter to standard practice
with other software, he did not build
in a mechanism to check this. The at-
tacker exploited this loophole and
manipulated Heartbeat to make it
send a short string of characters indi-
cating the maximum length. Then,
when the server reads the number of
characters out of its memory, it cop-
ied considerably more data than the
original combination of characters –
including sensitive information. Ex-
perts refer to this case as memory
corruption.

All too often, the programmer’s inten-
tion to solve one particular problem
is subverted by malicious hackers;
the hacker asks themselves how they
can use the software’s code for their
own purposes. Attacks by cybercriminals who encrypt
all files in order to demand a ransom for their release
are also notorious. These types of ransomware attacks
are responsible for most of the economic damage
caused by cybercrime. According to the industry asso-
ciation Bitkom, this totaled more than 220 billion eu-
ros in Germany alone in 2021.

The problem of IT security is further compounded by the
fact that modern software systems are seldom devel-
oped by a single person or even by a single company.
Rather, they are often assembled from a variety of com-
ponents that come from different sources. And each of
these components in turn consists of small individual
contributions from independent programmers who
have varying approaches to security.

“There are an awful lot of small open-source software sys-
tems that were perhaps developed by someone in their
spare time one afternoon, but over the last 20 years
have become incredibly critical and fundamental to our
digital economy,” says Marcel Böhme, head of the
Software Security Group at the Max Planck Institute
for Security and Privacy. But, aside from the original
developers, no one feels responsible for the security of
all these individual components. And after such a long
time, some of the developers are simply no longer in-
terested in further developing their program. Despite
this, there are still some advantages to publicly avail-
able software elements, especially in terms of security,
as many experts can check them. This is another rea-
son why companies such as Google use open-source
code. Google is now working with Böhme and his team
to detect security vulnerabilities in its own software.

One of the major problems of soft-
ware security is that the chain of pro-
gram components is only as well pro-
tected as its weakest link. And this
leaves even large commercial systems
vulnerable to attack. In some cases, all
it takes for a resourceful hacker to take
over the entire system is to identify a
single poorly protected component.

“This is often because this aspect was
not very important at the time the
program was created,” explains
Böhme. “Many of the major security
vulnerabilities we find in systems that
are in use around the world today can
be traced back to these kinds of ‘small’
vulnerabilities.” Memory corruption
is particularly critical here, he said.
Not only can it be exploited to spy on
and steal data – as in the case of Heart-
bleed – but it can also be used to
smuggle commands into a program
that, in the worst case, allows an at-
tacker to take control of the computer.

In the same way that more can be read from memory
than is specified, more can also be written to it than is
intended by a program – provided that the software is
not programed to check the specifications for the
amount of data requested or transferred. In order to
detect problems like this in the program code, current
systems, even when already in use, are extensively
tested for critical holes over weeks, months, and some-
times even years – and repaired if necessary through
security updates that are distributed with priority.
This is also true of software that many people use at
home. If, for example, a security vulnerability was to
emerge in Google Chrome that could be used to spread
malware, countless users around the world would be
affected and could become victims of ransomware at-
tacks. “But personal data, passwords, or browsing be-

SUMMARY

Software developers need to
make sure that their
programs are not vulnerable
to attack. Software that is not
tested for security
vulnerabilities often has
critical errors.
Researchers at the Max
Planck Institute for Security
and Privacy have dramati-
cally accelerated automated
vulnerability scanning using
greybox fuzzing.
Companies such as Google,
Bosch, and Oracle Labs are
already using the method
and discovering new bugs all
the time.

P
H

O
T

O
:

F
R

A
N

K
 V

IN
K

E
N

 F
O

R
 M

P
G

28

Max Planck Research · 1 | 2023

FOCUS

havior, for example, could also be stolen,” Böhme warns.
“Fortunately, the likelihood of that happening with Goo-
gle Chrome is very small,” he says. “After all, Google
has many ways of protecting its systems.”

There are a number of approaches to finding dangerous
flaws in a program. The simplest approach is for people

to take a close look at the software and look for bugs.
“But machines that do this automatically increase the
chances of success,” explains Böhme. With automated
methods, a distinction is made between static analysis
and so-called “fuzzing.” Static analysis methods start by
examining a program’s code and using it to create a
model that describes its behavior. Marcel Böhme illus-
trates this with a comparison to biology. In one branch of
this discipline, bioinformatics scientists might, for ex-
ample, replicate a cell on a computer, simulating the in-
teraction of its various components according to biolog-
ical rules. “In a similar way, you can also create a model
of a program,” Böhme explains. “This is done by simu-
lating its behavior based on the syntactic and semantic
rules used to write the software.” This model is then
used to try to predict all conceivable inputs and ulti-
mately prove that none of them can lead to a critical error.

Many hands make light work: the more people check programs, the more likely it is that security-
relevant errors will be discovered – especially when experts like those in Marcel Böhme’s team are

the ones doing the checking. That said, automated tests speed up the search.

“Greybox fuzzing combines
the best of both worlds.”

MARCEL BÖHME

Max Planck Research · 1 | 2023

FOCUS

29

Just like the cell replicated on the computer, however,
the model of a program is missing its real environment

– which in the case of a program is all the other programs
with which the tested program communicates.

Systematic random input

By contrast, fuzzing – which is what Böhme and his team
have devoted themselves to – involves running the pro-
gram under real conditions and subjecting it to as many
randomly generated inputs as possible. “Fuzzers es-
sentially simulate a user who is not doing what the pro-
grammer envisioned,” Böhme explains. In its purest
form, black-box fuzzing, no meaning is attributed to
the interrelationships in the code of the program under
study, and errors are detected solely by random input.
Blackbox fuzzers, however, also frequently test pro-
gram parts that are executed during use much more of-
ten than necessary, which is not very efficient. But
what’s worse: the black box also rarely tests program
parts that are seldom in demand, or in the worst case it
does not test them at all, meaning that security vulner-
abilities in them remain undetected. This problem can
be solved with whitebox fuzzing: here, the code is also
analyzed and, similar to the static methods, converted
into a formal model, which is then systematically exam-
ined down to the last detail. “This is very effective, but
takes far too long for modern programs,” says Böhme.

Consequently, at least at the beginning of debugging, ran-
domly generating input values is more efficient than
systematically exploring the program’s behavior. How-
ever, as testing progresses, the whitebox approach
gains ground because of its ability to learn and not have
to revisit behavior that has already been tested. The
black box approach, on the other hand, does not care
whether or not it has already tested a particular behav-
ior. “As a scientist, it is somewhat counterintuitive for a
bombardment of strictly randomly generated inputs to
yield better results than a deep analysis,” Böhme says.

“So at the end of my PhD, I became interested in the
question of whether this behavior could be explained.”
Besides security, another factor to consider is the
amount of time required. While a whitebox approach
creates just one or two inputs per second, a blackbox
fuzzer can easily create hundreds of thousands of ran-
domly generated inputs per second. “We have figured
out which approach works best under which condi-
tions,” Böhme tells us. “That then led us to greybox
fuzzing, which combines the best of both worlds, in a
sense.” A greybox fuzzer generates input just as fast as
a blackbox fuzzer, but also uses additional feedback
about the parts of the program that have already been
executed, just like a whitebox fuzzer. In doing so, grey-
box fuzzers avoid the repetitive testing of the same soft-
ware elements, which slows down the whole process. At
the same time, they also ensure that parts of the soft-
ware with niche functions aren’t overlooked.

The greybox fuzzer is a great error hunter: “When a piece
of software is subjected to fuzzing for the first time, we
find an average of two to three bugs, including security
vulnerabilities, per day,” says Böhme. “After a few
weeks, this reduces to three or four new bugs a week
and then stays constant, since new bugs are introduced
all the time.” The combination of efficiency and secu-

Manipulated echo: the Heartbeat
program checks for a secure connection

by regularly requesting changing
character combinations, each time

indicating the number of characters. In
2014, cybercriminals tricked the

software into retrieving significantly
more characters from a server’s memory

than the requested response. This was
how they tapped into sensitive data.

wants pages about boats. User Erica needs a secure
connection with the key “4538538374224”. User Sebas-
tian wants these 6 letters: POTATO. User Ida wants
pages about “irl games”. Unlock secure records with
master key 5130985733435. Maggie (Chrome user) sends
this message: “Hi, when are we meeting for lunch this
weekend?”

HEARTBEAT
PROGRAM

HEARTBLEED
ATTACK

BIRD. Lucas wants the “Missed Connec-
tions” page. Eve (administrator)
wants to set the server’s master key
to “14835038534.” Isabel wants pages
about “snakes, but not too long.”
User Karen wants to change the
account password to “CoHoBaSt.” Elis-
abeth would like to log in. User
Helmuth asked a question

D
IA

G
R

A
M

:
B

A
S

E
D

 O
N

 H
T

T
P

S
:/

/
X

K
C

D
.C

O
M

/1
35

4/
,

IS
T

O
C

K

POTATO

Server, are you
still there? If yes, answer

“bird” (500 letters).

Server, are you still there?
If yes, answer “potato”

 (6 letters).

secure connection. JJacob is requesting pictures of
deer. User Dieter wants these 500 letters: BIRD.
Lucas wants the “Missed Connections” page. Eve
(administrator) wants to set the server’s master key
to “14835038534.” Isabel wants pages about “snakes,
but not too long.” User Karen wants to change the
account password to “CoHoBaSt.” Elisabeth would like
to log in. User Helmuth asked a question

30

Max Planck Research · 1 | 2023

FOCUS

GLOSSARY

rity is also winning over tech companies: at Google
alone, 100,000 computers are now devoted to running a
greybox fuzzer and using it to test over 500 software
projects around the clock.

The fuzzers developed at the Max Planck Institute are ex-
clusively open-source applications, which means that
they are freely available on the Internet. “By taking this
approach, we’re also making it available to small-scale
programmers to help them troubleshoot their own pro-
grams,” Böhme says. Furthermore, larger open-source
projects are also being scanned. Just recently, for exam-
ple, Böhme’s fuzzers uncovered a serious security hole
in OpenSSL, a free software program for encrypted
communication in browsers and e-mail applications.

“The security hole our team found would have allowed
an attacker to take over computers sending encrypted
e-mails,” the computer scientist explained.

Security for the Internet
of Things

Despite many collaborations with large companies such as
Bosch and Oracle Labs, Google is still the most import-
ant collaborative partner for Marcel Böhme’s research
group. The American tech giant has a strong interest in
the security of open-source projects, as they also repre-
sent essential components of its own products. “The co-
operation with Google is interesting for us because they
are the market leader in this area and have extensive re-

sources that we would otherwise not have access to,” ex-
plains Böhme. “It’s a kind of symbiosis.” After all, even
though Google could use the freely available fuzzers
anyway, the group is always close to the current state of
development due to our close cooperation. Despite all
the current successes, Böhme also plans to take on new
challenges in the future. After all, digitalization and ar-
tificial intelligence are turning the world of data pro-
cessing upside down, necessitating completely new se-
curity concepts. Industry 4.0, for example, is a trend that
moves away from large, centralized computing units and
toward many small devices that have various sensors and
can, therefore, perform smaller tasks. “They usually
have relatively little computing power, which is why se-
curity is often considered to be of very little relevance
during the development of such systems,” Böhme ex-
plains. These small units often exchange data with other
devices, for example, to allow them to perform calcula-
tions on their own. “To ensure that the small devices in
this Internet of Things work properly on a large scale,
you could try, for example, to designate one of them to
test all the other devices,” Böhme says. The security of
machine-learning algorithms, or artificial intelligence,
is also becoming an increasingly important issue in soci-
ety. “These systems operate on completely different
principles than classical computer programs,” says the
researcher. “But unfortunately, we don’t yet have any
techniques for ensuring that the likes of an AI assistant
actually does what it’s supposed to do.” Böhme believes
that changing this is an important task, one that he and
his team would like to devote more time to in the future.
 www.mpg.de/podcasts/sicherheit (in German)

Race against the
attackers: Marcel
Böhme and his team
are working to make
the Internet of
Things and artificial
intelligence secure.
He discusses a new
idea with Kirandeep
Kaur to close
loopholes for
cybercriminals.

FUZZING
(derived from fuzzy) refers to automated

testing procedures that check software for
security vulnerabilities using random input.

A distinction is made between purely
random blackbox fuzzing, whitebox fuzzing
with additional model analysis, and greybox

fuzzing, in which a program is systemati-
cally tested with mass random inputs.

STATIC
SOFTWARE ANALYSIS

attempts to prove mathematically that no
possible input can lead to a critical error in

the program.

P
H

O
T

O
:

F
R

A
N

K
 V

IN
K

E
N

 F
O

R
 M

P
G

FOCUS

Max Planck Research · 1 | 2023

31

