GLOSTAR – auf der Suche nach atomarem und molekularem Gas in der Milchstraße

Zwei leistungsfähige Teleskope führen zu den detailreichsten Radiokarten der nördlichen Ebene der Milchstraße

Durch die Kombination von zwei der leistungsfähigsten Radioteleskope der Erde hat ein internationales Forscherteam unter der Leitung des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn die bisher empfindlichsten Karten der Radiostrahlung großer Teile der nördlichen galaktischen Ebene erstellt. Die Daten wurden mit dem Karl G. Jansky Very Large Array (VLA) in New Mexico in zwei verschiedenen Konfigurationen und dem 100-Meter-Radioteleskop des MPIfR in Effelsberg bei Bonn aufgenommen. Damit steht erstmals eine Radiokartierung zur Verfügung, die alle Winkelskalen bis hinunter zu 1,5 Bogensekunden abdeckt. Das entspricht der scheinbaren Größe eines auf dem Boden liegenden Tennisballs, gesehen aus einem Flugzeug in der Luft. Im Gegensatz zu früheren Kartierungen beobachtet GLOSTAR nicht nur das Radiokontinuum im Frequenzbereich von 4 bis 8 GHz mit voller Polarisation, sondern gleichzeitig auch Spektrallinien, die das molekulare Gas (aus Methanol und Formaldehyd) und atomares Gas über Radio-Rekombinationslinien nachzeichnen.

Das Projekt „Global View on Star Formation in the Milky Way“ (GLOSTAR) liefert die bisher empfindlichsten Karten der Radiostrahlung großer Teile der nördlichen galaktischen Ebene, aufgenommen mit dem Karl G. Jansky Very Large Array (VLA) in New Mexico in zwei verschiedenen Konfigurationen und dem 100-Meter-Radioteleskop Effelsberg des MPIfR. Dieser faszinierende neue Datensatz wird nun genutzt, um das interstellare Medium in der Milchstraße sowie massereiche Sterne in ihrer Kindheit und ihrem Tod zu untersuchen. Kurz nach dem 50. Geburtstag des Effelsberger Radioteleskops wurde nun eine Reihe von Arbeiten, die auf den GLOSTAR-Daten basieren, in der Fachzeitschrift Astronomy & Astrophysics veröffentlicht.

Während ein Interferometer wie das VLA sehr scharfe Bilder des Himmels erzeugen kann, geht die großräumige Emission oft verloren. Diese diffuse Komponente der Radiostrahlung kann jedoch durch Hinzufügen von Daten des 100-Meter-Effelsberg-Teleskops wiederhergestellt werden. „Das zeigt deutlich, dass das Radioteleskop Effelsberg auch nach 50 Jahren Betrieb immer noch sehr wichtig ist“, sagt Andreas Brunthaler, Hauptautor der ersten Arbeit, die einen Überblick über die Durchmusterung gibt und die Techniken zur Datenanalyse beschreibt.

Um die vollen 145 Quadratgrad der Durchmusterung zu kartieren, musste das Team kleinere Bilder von fast 50.000 verschiedenen Positionen kombinieren. „Wir benötigten etwa 700 Stunden Beobachtungszeit am VLA, wodurch fast 40 Terabyte an Rohdaten erzeugt wurden“, erklärt Sergio Dzib, der die Datenkalibrierung der VLA-Daten leitete. Während der Effelsberger Teil der Kartierung noch läuft, können die Daten bereits für neue und spannende Wissenschaft genutzt werden.

Bisherige Durchmusterungen haben nur etwa 30 Prozent der erwarteten Anzahl von Supernova-Überresten in der Milchstraße entdeckt. Dank der beispiellosen Empfindlichkeit der GLOSTAR-Durchmusterung war es möglich, allein in den VLA-Daten 80 neue Kandidaten zu finden und damit die Anzahl im beobachteten Gebiet zu verdoppeln. Mit der Hinzunahme der Effelsberg-Daten wird diese Zahl voraussichtlich nochmals steigen. „Dies ist ein wichtiger Schritt, um das lange bestehende Rätsel der fehlenden Supernova-Überreste in der Milchstraße zu lösen“, sagt Rohit Dokara, Doktorand am MPIfR und Erstautor der zweiten Arbeit.

Mit den spannenden Ergebnissen von Kartierungen im Submillimeter- und im fernen Infrarot-Wellenlängenbereich vom Boden und aus dem Weltraum konnten massereiche und kalte Staubklumpen, aus denen sich die massereichen Sternhaufen bilden, galaxienweit nachgewiesen werden. Ergänzend zu diesen Ergebnissen liefert die GLOSTAR-Kartierung ein sehr leistungsfähiges und umfassendes Bild sowohl der ionisierten als auch der molekularen Markierungen für Sternentstehung in der galaktischen Ebene.

Die vorliegende Kartierung deckt auch den nahen Sternentstehungskomplex Cygnus X ab. Hier wurden neue Quellen mit 6,7 GHz Methanol-Maser-Emission entdeckt. „Die 6,7-GHz-Linie von Methanol findet man ausschließlich in Regionen, in denen sehr massereiche Sterne von mindestens acht Sonnenmassen entstehen“, sagt Karl Menten, Direktor am MPIfR und Initiator von GLOSTAR. Er entdeckte die Emission von Methanolmasern, die zweitstärkste Spektrallinie im Radiowellenbereich, vor genau 30 Jahren zum ersten Mal im interstellaren Medium. Während alle Methanolmaser im Cygnus X-Komplex mit Staubemission assoziiert sind, werden weniger als die Hälfte der Quellen auch im Radiokontinuum nachgewiesen.

„Diese Maser sind Wegweiser für Sterne in einem sehr frühen Entwicklungsstadium, noch bevor nachweisbare Radiostrahlung zu sehen ist“, erklärt Gisela Ortiz-León vom MPIfR, die die Untersuchung der Region Cygnus X leitet. Echte massereiche Protosterne zu identifizieren, ist seit langem ein Ziel der Sternentstehungsforschung.

Während das optische Licht stark vom interstellaren Staub absorbiert wird, erlauben Radiowellen einen Blick in die zentralen Regionen der Milchstraße. Eine systematische Suche in der neuen Kontinuumskarte, die mit dem VLA in Richtung des galaktischen Zentrums beobachtet wurde, nach Radioemission, die mit potenziellen jungen stellaren Objekten aus einem kürzlich veröffentlichten Katalog assoziiert ist, ermöglicht ein besseres Verständnis ihres Entwicklungsstadiums.

„Während wir für eine gute Anzahl von ihnen Radioemission finden, fehlt es vielen der Objekte an Radiogegenstücken und Staubemission, was darauf hindeutet, dass sie weiter entwickelt sind und ihre Geburtswolken bereits aufgelöst haben“, berichtet Hans Nguyen, ein weiterer Doktorand am MPIfR, der die Studie über diese jungen stellaren Objekte leitet. Die zugehörigen Radioquellen ermöglichen weitere Rückschlüsse auf die Sternentstehungsrate im galaktischen Zentrum.

Die große Anzahl von Quellen zu katalogisieren ist ebenfalls eine Herausforderung. Die erwartete Anzahl in den vollständigen GLOSTAR-Datensätzen liegt bei einigen zehntausend Quellen unterschiedlicher Natur. „Es gibt fast 100 Quellen pro Quadratgrad und wir nutzen alle verfügbaren Informationen, um sie zu klassifizieren“, sagt Sac Medina, Mitautorin der vier Arbeiten und ehemalige Doktorandin am MPIfR, die die erste Quellenkatalogarbeit leitete und derzeit den Katalog der vollen GLOSTAR D-Konfigurationsbilder vorbereitet.

Von Anfang an wurden im MPIfR eine Reihe von umfangreichen Kartierungen des Radiohimmels durchgeführt, die meisten davon allerdings bei längeren Wellenlängen. Die GLOSTAR-Durchmusterung ist die erste Durchmusterung im Bereich von 4 bis 8 GHz, die mit den IR-Durchmusterungen im Weltraum in Bezug auf räumliche Skalen und dynamische Bereiche konkurrieren kann und daher einen einzigartigen Datensatz in Hinblick auf eine globale Perspektive zur Untersuchung der Sternentstehung in unserer Galaxie liefern wird.

Zusätzliche Informationen

GLOSTAR, die "Global View on Star Formation in the Milky Way"-Kartierung nutzt breitbandige (4 bis 8 GHz) C-Band-Empfänger des VLA und des 100-Meter-Radioteleskops Effelsberg, um eine unverfälschte Kartierung von Sternentstehungsgebieten in der Milchstraße durchzuführen. Diese Durchmusterung der galaktischen Mittelebene entdeckt aussagekräftige Indikatoren für frühe Phasen der Entstehung von massereichen Sternen: kompakte, ultra- und hyperkompakte HII-Regionen und Methanol-Maser (CH3OH) bei einer Frequenz von 6,7 GHz, die einige der frühesten Entwicklungsstadien in der Entstehung massereicher Sterne aufspüren. Sie können dazu verwendet werden, die Positionen sehr junger stellarer Objekte zu lokalisieren, von denen viele noch tief in ihre Geburtswolken eingebettet sind. Die Beobachtungen liegen um eine Mittenfrequenz von 5,8 GHz und umfassen auch die Emission von Formaldehyd (H2CO) bei 4,8 GHz sowie mehrere Radio-Rekombinationslinien (RRLs), die alle in zukünftigen Publikationen vorgestellt werden. Die GLOSTAR-Beobachtungen wurden mit den VLA B- und D-Konfigurationen und dem Effelsberger 100-Meter-Teleskop für die großräumige Struktur durchgeführt.

MPIfR-affilierte Autoren in den vier GLOSTAR-Veröffentlichungen umfassen (in alphabetischer Reihenfolge): A. Brunthaler, C.-H. R. Chen, S. A. Dzib, R. Dokara, Y. Gong, C. König, S-N. X. Medina, K. M. Menten, P. Müller, H. Nguyen, G. N. Ortiz-León, W. Reich, M. R. Rugel, B. Winkel, A. Y. Yang und F. Wyrowski.

Weitere interessante Beiträge

Zur Redakteursansicht