Yearbook 2006

Filter by institute

Caravaggio’s cult status is largely based on clichés surrounding the painter’s notoriety as a criminal bohemian. The Bibliotheca Hertziana has embarked on a long-term research project, the first phase of which seeks to re-examine the artist’s life in the light of contemporary sources and the interdisciplinary context of recent historical research. What emerges from this investigation is the picture of an (almost) normal life amidst an ambitious and enterprising middle class. more
Early modern agents, key figures in the mediation of cultural and scientific concepts, have come into the focus of research. On the basis of the correspondence of the Roman agent Johann Friedrich Reiffenstein (1719-1793), which for the first time has been reconstructed from German, Italian and foremost Russian archives, an attempt is made to analyse the communicative patterns of the transfer of aesthetic, artistic and scientific concepts from late enlightened Rome to the Northern and Eastern European periphery. more
The exact halfing of the previously replicated chromosomes during mitosis and both meiotic divisions is crucial to avoid tumor formation and trisomies. Chromosomes are separated by action of separase, a giant protease, which cleaves chromosomal cohesin. Researchers from the Max-Planck-Institute of Biochemistry recently discovered a new regulation and an unexpected, non-proteolytic function of this key enzyme. more
The terrestrial biosphere is an integral component of the Earth system. Are there general principles which might explain and predict the functioning of the biosphere and its interaction with the Earth system? This question is central to the work of the biospheric theory and modeling group at the Max-Planck-Institute for Biogeochemistry, and is addressed by using concepts from thermodynamics, statistical mechanics and optimality. After a brief description of the biosphere as a dissipative system, three examples are given to demonstrate the strength of these approaches. more
Endothelial cells form the inner cell layer of blood vessels. They determine when and where within the organism leukocytes enter from the blood into tissue. This step initiates the process of inflammation and keeps it alive. Understanding the molecular basis of cell cell recognition and capturing of leukocytes to the endothelium, as well as the mechanism of leukocyte-transmigration through the blood vessel wall (diapedesis) are the major research goals for the Department of Vascular Cell Biology at the MPI for Molecular Biomedicine in Münster. more

Mechanisms of membrane transport visualized by electron microscopy and x-ray crystallography

Max Planck Institute of Biophysics Kühlbrandt, Werner; Appel, Matthias; Barton, Bastian; Kalthoff, Christoph; Raunser, Stefan; Schröder, Rasmus; Vinothkumar, Kutti Ragunath; Yildiz, Özkan
In recent research the Department of Structural Biology at the Max Planck Institute of Biophysics addressed membrane transport proteins from thermophilic archaea, which are more robust than their eukaryotic counterparts yet often quite similar to them, and thus serve as good models for medically relevant systems. They determined the structure of a signaling protein that regulates nitrogen uptake in archaea and bacteria in three different states, which helped them to elucidate the regulatory mechanism. Furthermore they investigated pH- and ion-induced conformational changes that accompany activation and ion transport in sodium-proton exchange proteins, and in the outer membrane porin OmpG from E. coli. more
The retina covers the inside of the eye and, comparable to the film in a photographic camera, represents the light sensitive layer. During embryonic development the retina forms as a protrusion of the future brain and is, therefore, part of the central nervous system. Because of its well defined function, its regular structure and its easy accessibility, the retina serves as a model to study brain function. This report describes the contacts (synapses) between neurons of the retina where the inhibitory neurotransmitter glycine is released. more
Nervous system development depends on mechanisms that control the generation of different neuronal subtypes. In the peripheral nervous system, signals from innervated targets elicit the specialization to different functional neuronal subtypes. The target-dependent cholinergic differentiation of sympathetic neurons is mediated in vivo by members of the gp130-cytokine family. more
Go to Editor View