Myelin optimiert Informationsverarbeitung im Gehirn

Myelin-bildende Gliazellen sind entscheidend für die zeitliche Verarbeitung akustischer Signale

4. November 2020

In einer Konversation können wir einzelne Worte leicht verstehen und auseinanderhalten. Im Gehirn wird die zeitliche Struktur von Sprache mit ihrer schnellen Abfolge von Lauten und Pausen und dem charakteristischen Rhythmus durch elektrische Impulse kodiert. Forschende des Max-Planck-Instituts für experimentelle Medizin in Göttingen haben herausgefunden, dass Nervenzellen die zeitliche Abfolge akustischer Signale nur dann verarbeiten können, wenn sie mit bestimmten Gliazellen zusammenarbeiten.

Nervenzellen leiten elektrische Signale mit Hilfe ihrer Axone weiter. Die Geschwindigkeit und zeitliche Präzision, die für die Verarbeitung im Gehirn erforderlich ist, wird nur dank des Myelins erreicht – einer von sogenannten Oligodendrozyten gebildeten elektrischen Isolierung der Axone. Diese Gliazellen erhöhen einerseits die Nervenleitgeschwindigkeit. Darüber hinaus versorgen die Oligodendrozyten die Nervenzellen mit Energie in Form von Milchsäure (Laktat).

Über die Rolle des Myelins bei der Verarbeitung von Sinneswahrnehmungen in der Hirnrinde war bislang wenig bekannt. Die Forschenden haben deshalb das Hörsystem untersucht, das auf die kontinuierliche Weiterleitung von Informationen spezialisiert ist und entsprechend konstant Energie benötigt. Sie haben dazu die neuronale Aktivität der für das Hören spezialisierten Hirnrinde in Tierversuchen an genetisch veränderten Mäusen gemessen, die unterschiedliche Mengen an Myelin produzieren. „Unsere Ergebnisse zeigen, dass weniger Myelin mit geringerer Nervenzellaktivität auf wiederholte akustische Reize einher geht“, sagt Livia de Hoz, die die Studie zusammen mit Klaus-Armin Nave am Max Planck Institut für experimentelle Medizin geleitet hat und die inzwischen an der Charité – Universitätsmedizin Berlin arbeitet.

Defizite bei der Tonwahrnehmung

Die Forschenden haben auch herausgefunden, dass die Nervenzellen der Mäuse mit weniger oder gar keinem Myelin kurze Pausen innerhalb eines langanhaltenden Tons schlechter identifizieren können. Beim Menschen ist diese Fähigkeit zum Beispiel eine wichtige Voraussetzung für die Spracherkennung.

Die Wissenschaftlerinnen und Wissenschaftler haben die elektrophysiologischen Experimente zudem durch Lern- und Verhaltensstudien ergänzt. Ähnlich wie bei der neuronalen Aktivität zeigte sich auch hierbei, dass die genetisch veränderten Mäuse die in langen Tönen eingebetteten Pausen nicht als solche wahrnehmen können. „Myelin ist also unabhängig von der eigentlichen Nervenleitgeschwindigkeit wichtig, damit Nervenzellen die zeitliche Abfolge akustischer Reize korrekt entschlüsseln können“, erklärt Klaus-Armin Nave.

Könnte dies daran liegen, dass Oligodendrozyten den Axonen Energie zur Verfügung stellen? Die Forscher und Forscherinnen haben eine dritte Mausmutante untersucht, bei der lediglich die Energiezufuhr von Gliazellen zu den Axonen verringert ist, die ansonsten aber normale Myelin-Werte aufweist. Interessanterweise zeigen diese Tiere die gleichen Defizite der zeitlichen Kodierung akustischer Signale. „Dieses Ergebnis macht es sehr wahrscheinlich, dass auch beim Verlust des Myelins die geringere Energieversorgung durch Gliazellen ein entscheidender Faktor für die Defizite bei der Verarbeitung akustischer Reize ist“, sagt die Erstautorin der Studie, Sharlen Moore.

Weitere interessante Beiträge

Zur Redakteursansicht