Max-Planck-Institut für Neurobiologie

Max-Planck-Institut für Neurobiologie

Um in der Welt zu bestehen, muss sich ein Organismus auf ständig neue Verhältnisse einstellen können. Dies wäre nicht möglich ohne das Gehirn und Nervensystem, die alle wichtigen Abläufe im Körper steuern: Sie verarbeiten Sinneseindrücke, kontrollieren Organfunktionen, steuern Bewegungen und ermöglichen unser Denken. Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried wollen verstehen, wie sich solch ein komplexes System entwickeln kann, wie es im Detail funktioniert, und wie es in einer sich kontinuierlich verändernden Umwelt die entsprechenden Verhalten auslösen kann. Im Fokus stehen dabei die kleinsten Veränderungen von Gehirn und Nervensystem auf Ebene der Moleküle bis hin zu den Synapsen, den Zellen und den Nervennetzwerken.

Kontakt

Am Klopferspitz 18
82152 Martinsried
Telefon: +49 89 8578-1
Fax: +49 89 8578-3541

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Molecular Life Sciences: From Biological Structures to Neural Circuits

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Gene - Schaltkreise - Verhalten

mehr

Abteilung Synapsen – Schaltkreise – Plastizität

mehr

Abteilung Schaltkreise - Information - Modelle

mehr

Abteilung Elektronen - Photonen - Neuronen

mehr

Abteilung Moleküle – Signale – Entwicklung

mehr

Vom Laien zum Experten

20. September 2021

Die Lernfähigkeit von Mäusen hilft Forschenden bei der Suche nach Hirnregionen, die erworbenes Wissen speichern

mehr

Neuer Maustyp macht sichtbar, wenn Nervenzellen fehlgefaltete Proteine nicht ausmustern

mehr

Um geradeaus zu fliegen, müssen Fruchtfliegen Bewegungen wahrnehmen können

mehr

Beim Lernen führen längere Pausen zu stabileren Aktivierungsmustern im Gehirn

mehr

Im visuellen Thalamus stehen Nervenzellen mit beiden Augen in Kontakt, reagieren aber nur auf eines

mehr

Großes Bewegungstalent besitzt eine wenige Tage alte Zebrafischlarve noch nicht – kurze, heftige Schwanzschläge, viel mehr ist in diesem Alter nicht drin. Herwig Baier vom Max-Planck-Institut für Neurobiologie in Martinsried bei München reicht das aber schon. Ein einfaches und vor allem durchsichtiges Gehirn ist für ihn viel wichtiger, schließlich will er einzelne Nervenzellen mit Licht an- und ausschalten und so herausfinden, wie das Gehirn Bewegungen und Verhalten steuert.

Am Anfang gab es nur einen kleinen Trampelpfad zwischen dem Max-Planck-Institut für Neurobiologie in Martinsried und dem Stadtrand von München. Inzwischen ist an der Münchner Peripherie ein riesiger Biocampus entstanden, und aus dem Pfad wurde ein breiter Weg. Tobias Bonhoeffer zufolge funktionieren Lernen und Gedächtnis ganz ähnlich: Intensiv benutzte Wege werden ausgebaut, unwichtige Strecken oder Sackgassen stillgelegt.

Wissenschaftlichen Koordinator Bau (m/w/d)

Max-Planck-Institut für Neurobiologie, Martinsried 27. September 2021

Technischen Koordinator Bau (m/w/d)

Max-Planck-Institut für Neurobiologie, Martinsried 27. September 2021

Fachinformatiker*in für Systemintegration IHK (m/w/d)

Max-Planck-Institut für Neurobiologie, Martinsried 5. August 2021

Kaufmann/-frau für Büromanagement (m/w/d)

Max-Planck-Institut für Neurobiologie, Martinsried 29. Juli 2021

Wie rechnen Nervenzellen?

2020 Borst, Alexander

Genetik Neurobiologie Zellbiologie

Wenn wir die Augen öffnen und umherblicken, erkennen wir in Sekundenbruchteilen, wo wir uns befinden; wir wissen, welche Gegenstände uns umgeben und in welche Richtung sie sich bewegen. All diese Informationen sind zwar in den Bildern vorhanden, die unser Gehirn von der Netzhaut empfängt, aber nur implizit: um die Information explizit zu erhalten, muss unser Gehirn rechnen. Wie aber rechnen Nervenzellen? Am Beispiel des Bewegungssehens der Fruchtfliege Drosophila gelang es uns in den letzten Jahren, diese Frage in weiten Teilen erstmals aufzuklären. 

mehr

Wie Eiweißablagerungen das Gehirn verändern

2020 Dudanova, Irina

Medizin Neurobiologie

Neurodegenerative Erkrankungen sind verheerende Krankheiten, deren grundlegende Mechanismen noch nicht ausreichend erforscht sind. Ein gemeinsames Merkmal sind Eiweißablagerungen im Gehirn. Mithilfe histologischer und biochemischer Methoden, Verhaltensanalysen sowie mikroskopischer Untersuchungen an lebenden Organismen (Invitralmikroskopie) untersucht unsere Forschungsgruppe die Auswirkungen dieser Eiweißablagerungen auf Nervenzellen. Unsere Studien sollen dabei helfen, die Entstehung neurodegenerativer Erkrankungen besser zu verstehen, um in Zukunft effiziente Therapien entwickeln zu können.

mehr

Der Ursprung der Nervenzelldiversität

2019 Mayer, Christian

Entwicklungsbiologie Genetik Medizin Neurobiologie

Das Säugetiergehirn besteht aus Hunderten von Zellpopulationen, die alle die gleiche Erbinformation im Zellkern tragen. Doch wie können aus dem gleichen Bauplan ganz unterschiedliche Neurone entstehen? Im Fokus unserer Untersuchungen steht die „Ganglieneminenz“, eine embryonale Gehirnstruktur, in der unter anderem eine Vielzahl hemmender Nervenzelltypen gebildet werden. Mithilfe der Einzelzell-Sequenzierung untersuchten wir die Genexpression einzelner Zelltypen. Unsere Befunde werfen ein neues Licht auf die molekulare Diversifizierung von Neuronen.

mehr

Bewegungsmuster locken Artgenossen

2019 Larsch, Johannes; Baier, Herwig

Neurobiologie Verhaltensbiologie

Ein Blick oder eine Geste reichen häufig, um die Intention eines Nachbarn einzuschätzen und das eigene Verhalten daran anzupassen. Mittels einer virtuellen Umgebung für junge Zebrafische ist es uns gelungen, einzelne Tiere zum Schwarmverhalten mit simulierten Artgenossen zu animieren. Unsere Ergebnisse geben Einblicke in die Mechanismen der Wahrnehmung von Signalen, die soziales Verhalten auslösen.

mehr

Designerproteine für die Hirnforschung

2018 Griesbeck, Oliver

Immunbiologie Infektionsbiologie Medizin Neurobiologie

Mittels sogenannter "gerichteter Evolution" lassen sich in vitro maßgeschneiderte Proteine für die neurobiologische Grundlagenforschung erstellen. Um solche Proteine effizienter erzeugen und validieren zu können, entwickelten wir eine Screening-Station, die es uns erlaubt, in Bakterien schnell und effizient besonders geeignete Protein-Varianten auszuwählen. Mit Hilfe dieser Station optimierten wir ein fluoreszierendes Protein, das sich besonders für das Markieren tief im Gehirn gelegener Strukturen eignet.

mehr
Zur Redakteursansicht