Max Planck Institute for Biological Intelligence, in foundation (Seewiesen site)

Max Planck Institute for Biological Intelligence, in foundation (Seewiesen site)

Max Planck Institute for Ornithology

The Max Planck Institute for Biological Intelligence, in foundation, emerged from the two Max Planck Institutes of Neurobiology and for Ornithology in January 2022. The final, legal establishment of the institute will take place on January 1, 2023. About 500 employees from more than 50 nations are dedicated to basic research on topics in behavioral ecology, evolutionary research and neuroscience. The institute research focuses on biological intelligence, i.e. the abilities of animal organisms that have evolved through evolution to acquire, store, apply and pass on knowledge about their environment in order to find ever new solutions to problems and adapt to a constantly changing environment. The mechanisms of biological intelligence are being examined at various levels: studies range from molecular interactions to entire groups of individuals.

The institute has two locations, the nature-oriented Campus Seewiesen near Starnberg, and the Campus Martinsried in the southwest of Munich.

Contact

Eberhard-Gwinner-Straße
82319 Seewiesen
Phone: +49 8157 932-0
Fax: +49 8157 932-209

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Organismal Biology

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Behavioural Neurobiology

more

Department Behavioural Ecology and Evolutionary Genetics

more
Illustration of a fish head with eye and brain cells. Several zebrafish in the background.

Specialized nerve cells in the zebrafish visual system enable recognition of conspecifics

more
Four brown-gray birds in flight, seen from the side against a dark background.

Zebra finches communicate via eye contact and calls to coordinate their spatial positions during flocking flight

more
Auguste von Bayern from the Max Planck Institute for Biological Intelligence with a macaw in the breeding station of the Loro Parque Foundation. Since 2014, von Bayern has been leading the Comparative Cognition Research Group at the MPI and runs a research station on Tenerife where her team investigates the cognitive abilities of different parrot species comparatively, collaborating with the Loro Parque Foundation, which keeps the largest collection of parrots in the world.

Interview with zoologist Auguste of Bavaria on endangered parrots and their suitability as pets

more
Different morphs of ruffs males

A genetic conflict between the sexes promotes intraspecific diversity in ruffs

more
Show more

Anna Proß of the Max Planck Institute for Ornithology researched the vocal behavior of nightingales in Ghana. Here, she talks about her encounters with venomous snakes, her new fondness for plantains, and she reveals how ornithologists are making the most of the COVID-19 pandemic.

Two shadows flit around in the evening light. A bat is chasing after a moth in a wild dance between hunter and prey. For Holger Goerlitz, pursuits like this one are a real thrill. The leader of an Emmy Noether Research Group at the Max Planck Institute for Ornithology in Seewiesen is researching how bats and insects use sound to detect each other.

No zebra finch emerges from the egg as an accomplished singer: each young bird first has to take singing lessons. Songbirds are therefore excellent model organisms for the study of learning processes in vertebrates. Manfred Gahr and his team at the Max Planck Institute for Ornithology in Seewiesen are conducting research into how various songbird species learn their songs and what happens in their brains during the process.

Until recently, following the crowd was not seen as a desirable goal in life. These days, however, everyone is talking about swarm intelligence. But are swarms really smarter than individuals? And what rules, if any, do they follow? With the help of new computational techniques, Iain Couzin from the Max Planck Institute for Ornithology in Radolfzell imposes order on the seeming chaos of swarms.

No job offers available

How behavioural diversity is maintained

2021 Küpper, Clemens

Behavioural Biology Ecology Evolutionary Biology Genetics

Within species diversity in morphology and behaviour is widespread in nature. In ruffs, a substantial amount of this diversity is encoded by variants of a supergene that have different fitness consequences for males and females.

more

Neural control of vocal interactions in zebra finches

2020 Vallentin, Daniela

Behavioural Biology Ecology Neurosciences

During a good conversation we typically rarely interrupt each other. Although we often already know what we want to say, we suppress our own pronunciation until the other person has finished speaking. How does the brain control this behavior? To better understand the mechanisms involved, we took a closer look at the calling behavior of zebra finches and the neural processes taking place. Like humans, zebra finches coordinate their vocalizations depending on the social situation. This interaction is based on a temporally ordered interplay between inhibiting and excitatory neurons.

more

The neural basis of duet singing – a neurophysiological field study

2019 Susanne Hoffmann, Lisa Trost, Cornelia Voigt, Stefan Leitner, Alena Lemazina, Hannes Sagunsky, Markus Abels, Sandra Kollmansperger, Andries Ter Maat & Manfred Gahr

Behavioural Biology Ecology Neurosciences

Duet singing is a form of social interaction between two individuals which requires the precise interindividual coordination of vocal emissions. How the brain controls this cooperative behavior was so far unknown. Here, the individual vocalizations and the underlying brain activity in free-living pairs of duetting songbirds has been recorded in parallel with novel miniature transmitters. The data revealed that preprogrammed temporal duet patterns in each songbird’s brain were altered by the partner’s vocalizations to enable optimal interindividual coordination during joint singing.

more

Acoustic invisibility cloaks and pricked-up ears

2018 Goerlitz, Holger R.

Behavioural Biology Ecology

Our sensory systems are our access to the world. In an evolutionary arms race, bats and insects interact as predator and prey based on exclusively acoustic information. Using microphone systems in the lab and field, we investigate which information and sensory strategies bats use for hunting insect prey. To counter the prey’s defence systems, some bats became inaudible for their unsuspecting prey, while other species rely on the prey’s rustling noises or eavesdrop on the foraging calls of other close-by bats.

more

Sleeping on the wing

2017 Rattenborg, Niels C.

Behavioural Biology Ecology Microbiology Neurosciences Physiology

For centuries, people have wondered whether birds sleep on the wing during long, non-stop flights. However, until recently there was no direct evidence for sleep in flight. Measuring the brain activity of frigatebirds in the wild showed that these birds can sleep with either one cerebral hemisphere at a time or both hemispheres simultaneously. Despite being able to engage in all types of sleep in flight, the birds slept less than an hour a day, a mere fraction of the time spent sleeping on land.

more
Go to Editor View