Max Planck Institute for Developmental Biology

Max Planck Institute for Developmental Biology

All living organisms change – during the course of their lifetimes and across generations. The Max Planck Institute for Developmental Biology is concerned with the development and evolution of animals and plants. The Institute’s scientists study how a fully functioning organism develops from a fertilised egg cell, and which genes are involved. They also analyse the role of these developmental processes in the emergence of new species, and examine the evolution of proteins. In a bid to find answers to their questions, the scientists work with model organisms, such as the zebra fish, fruit fly, threadworm and thale cress, a relative of the cabbage family. It has been shown that genes which influence development work in a similar way in different organisms – be they flies or people, thale cress or rice.


Max-Planck-Ring 5
72076 Tübingen
Phone: +49 7071 601-350
Fax: +49 7071 601-300

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):
IMPRS "From Molecules to Organisms"

All other PhD students are supported by the International PhD Program for the Biological Sciences. To apply, please contact the directors or research group leaders at the Institute directly.

Detlef Weigel will receive the Barbara McClintock Prize 2019
The scientist from the Max Planck Institute for Developmental Biology in Tübingen is awarded with the renowned prize for plant genetics and genome studies more
Evolutionwatch for plants
Scientists are giving plant collections from museums a new lease of life more
Life on the edge prepares plants for climate change
Genetic variability supports plant survival during droughts more
Precision breeding needed to adapt corn to climate change
It took 2000 years to successfully grow maize in northern climates more
Is evolution predictable?
Yearbook article 2016, Max Planck Institute for Developmental Biology
Author: Richard Neher more
Parasites exist not only in the plant and animal kingdoms, they are also a part of us. Our genome contains myriad short stretches of DNA that propagate at the genome’s expense. For this reason, these transposons, as they are called, are also referred to as parasitic DNA. Oliver Weichenrieder from the Max Planck Institute for Developmental Biology in Tübingen wants to shed light on the processes by which transposons are copied – not only because they can cause disease, but also because they may be an important engine of evolution.
Admittedly, the research subject isn’t particularly appetizing: Strongyloides stercoralis – small parasitic worms that live in their host’s intestines and have the potential to cause severe problems. Nevertheless, Adrian Streit from the Max Planck Institute for Developmental Biology in Tübingen is fascinated by this threadworm. It has a unique life cycle, and to this day, no one really understands why.

The human body is home to countless microbes. The intestinal tract, in particular, is colonized by innumerable bacteria. As a young environmental microbiologist, Ruth Ley never imagined that she would one day find herself interested in the human gut and the microbiota that reside in it. Today she conducts research at the Max Planck Institute for Developmental Biology in Tübingen, investigating the role the countless intestinal bacteria play in our health.

Climate change is radically altering the Earth’s plant and animal life. This is due not only to the rise in mean temperatures throughout the world, but also to the changes in temperature variability between both day and night, and summer and winter. George Wang, a scientist at the Max Planck Institute for Developmental Biology, analyzes climate data with a view to researching the influence of the altered conditions on flora and fauna.

The Roundworm? What Teeth!

Biology & Medicine
Worms, beetles and a small island in the middle of the ocean. For developmental geneticist and evolutionary biologist Ralf Sommer from the Max Planck Institute for Developmental Biology in Tübingen, roundworms and beetles are the actors and the island of La Réunion the stage on which a great drama unfolds: an educational piece about evolution, the diversity of nature, and how it emerges.
The ragworm is an unusual laboratory animal. However, for Gáspár Jékely of the Max Planck Institute for Developmental Biology in Tübingen, this marine inhabitant has all the qualities of a perfect model organism: the larvae possess the simplest eyes in the world and later develop a simple nervous system made up of just a few hundred cells. This means that the scientist can track how sensory stimuli trigger behavioral changes.
Anaerobic culturing technician (m/f)
Max Planck Institute for Developmental Biology, Tübingen December 12, 2016

Predicting adaptability of wild plants to global change

2018 Weigel, Detlef
Cell Biology Evolutionary Biology Genetics Plant Research
How do wild species respond to the climate change we currently experience? Scientists from the institute have discovered that the ability to adapt to extreme climate events is not uniformly distributed even within a single wild plant species. Hence, predictions of the future distribution of species are only meaningful if differences both between and within species are taken into account. more

Phenotypic plasticity – how genes and the environment interact

2017 Sommer, Ralf J.; Loschko, Tobias; Riebesell, Metta; Röseler, Waltraud; Witte, Hanh
Developmental Biology Evolutionary Biology
Organisms are responsive to environmental variation. However, little is known on how genetic regulation of development is linked to environmental changes. Phenotypic plasticity, the property of a single genotype to produce distinct phenotypes dependent on the environmental conditions, provides a unique opportunity to study organismal-environmental interactions. The nematode Pristionchus pacificus is a new model for studying phenotypic plasticity. P. pacificus forms two distinct mouth-forms and is accessible to an unbiased studying of phenotypic plasticity. more

Connectomics in a marine larva: small but mighty

2017 Jékely, Gáspár
Developmental Biology
Connectomes are wiring diagrams of neural networks showing the specific connections between neurons. The research group Neurobiology of marine zooplankton is working on the complete wiring diagram of a small marine larva to understand how neuronal circuits mediate behaviour. more

Is evolution predictable?

2016 Neher, Richard
Evolutionary Biology
We are surrounded by microorganisms that adapt in their struggle to persist. In contrast to animals or plants, such adaptations don't take thousands of years but sometimes happen within weeks. To understand such rapid evolution, we need new theoretical frameworks and direct observations of the evolutionary dynamics. The research group develops such theory and uses it to analyze sequence data from influenza and human immunodeficiency virus populations. The results provide insight into the properties of the evolutionary process and allow predicting the composition of future virus populations. more

Early embryogenesis of Arabidopsis

2016 Bayer, Martin; Jürgens, Gerd
Cell Biology Developmental Biology Plant Research
The basic features of the body organisation of adult plants are established during embryogenesis. This process starts from the fertilized egg cell (zygote), which divides into an apical embryonic cell and a basal extra-embryonic cell. How this initial difference originates with input from the YODA pathway is briefly discussed. These cells give rise to embryo and extra-embryonic suspensor, respectively. The embryonic cells then generate, in response to the plant hormone auxin, a signal that stimulates the adjacent extra-embryonic cell to initiate the formation of the embryonic root meristem. more
Go to Editor View