Max-Planck-Institut für Plasmaphysik

Max-Planck-Institut für Plasmaphysik

Die Forscher des Max-Planck-Instituts für Plasmaphysik wollen das Feuer der Sonne auf die Erde holen. Ein Fusionskraftwerk soll Energie erzeugen, indem Deuterium- und Tritium-Kerne, zwei schwere Isotope des Wasserstoffs, zu Helium verschmelzen. Das Fusionsfeuer zündet in einem über 100 Millionen Grad Celsius heißen Plasma, das berührungsfrei in einem Magnetfeld eingeschlossen wird. Der internationale Testreaktor ITER soll zeigen, dass die Reaktion mehr Energie liefert, als aufzuwenden ist, um die hohe Zündtemperatur aufrechtzuerhalten. Dazu erforschen die Wissenschaftler unterschiedliche Anlagentypen und die Prozesse, die darin ablaufen. In Garching wird der Tokamak ASDEX Upgrade betrieben, im Teilinstitut Greifswald Wendelstein 7-X, die weltweit größte Fusionsanlage vom Bautyp Stellarator. In Experiment und Theorie wird hier untersucht, wie sich die Fusionsbedingungen am effizientesten schaffen lassen. Nicht zuletzt werden im IPP auch die sozio-ökonomischen Bedingungen studiert, unter denen die Kernfusion zum künftigen Energiemix beitragen kann.

Kontakt

Boltzmannstr. 2
85748 Garching
Telefon: +49 89 3299-01
Fax: +49 89 3299-2200

Promotionsmöglichkeiten

Dieses Institut hat keine International Max Planck Research School (IMPRS).

Es gibt jedoch die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

Abteilung Stellarator-Szenario-Entwicklung mehr
Abteilung Stellerator: Rand- und Divertorphysik mehr
Abteilung Numerische Methoden in der Plasmaphysik mehr
Abteilung Tokamak: Rand- und Divertorphysik mehr
Abteilung Stellarator-Optimierung mehr
Abteilung Tokamak-Szenario-Entwicklung mehr
„Wir brauchen Unternehmen, die Energieeffizienz in die Städte bringen.“
Thomas Hamacher geht der Frage nach, ob und inwiefern das absehbare Wachstum der Städte eine besondere Herausforderung für die Energieversorgung bedeutet. Ein Interview mit dem Wissenschaftler
mehr
Fusionskraftwerke als Lösung der Energiefrage

Fusionskraftwerke als Lösung der Energiefrage

Forschungsmeldung 22. Juni 2009
Günther Hasinger über die Chancen und Risiken bei der Zähmung des Plasmas als effiziente Energiequelle (Podcast) mehr
Die wissenschaftliche Basis für einen Fusionsreaktor zu festigen – mit diesem Ziel ist Sibylle Günter als  Wissenschaftliche Direktorin am Max-Planck-Institut für Plasmaphysik angetreten. Doch seit der Abkehr von der Kernspaltung hat es in der Politik auch die Kernfusion schwer.
Das Sonnenfeuer auf die Erde holen – aus dieser Vision soll Wirklichkeit werden. Doch zuvor müssen die Forscher noch viele Schwierigkeiten meistern, bis uns eines Tages der erste Fusionsreaktor mit dieser sauberen Energie versorgt.
Diplom-Ingenieur/-in (FH) Fachrichtung Hochbau
Max-Planck-Institut für Plasmaphysik, Garching 16. November 2017
Lohnbuchhalter/-in bzw. Bezügerechner/-in
Max-Planck-Institut für Plasmaphysik, Garching 8. November 2017
Projektcontroller/-in
Max-Planck-Institut für Plasmaphysik, Garching 7. November 2017
Fachinformatiker/-in für Systemintegration
Max-Planck-Institut für Plasmaphysik, Garching 3. November 2017

Experimente mit dem Manipulatorsystem DIM-II im Divertor von ASDEX Upgrade

2017 Herrmann, Albrecht; Krieger, Karl
Plasmaphysik Quantenphysik Teilchenphysik
Der Divertor – speziell ausgerüstete und gekühlte Prallplatten am Boden des Plasmagefäßes, auf die Teilchen aus dem Rand des Plasmas abgelenkt werden – führt in einem späteren Fusionskraftwerk einen Teil der erzeugten Fusions­energie sowie die Helium-Asche ab. Mit dem Divertormanipulator DIM-II wird dies an der Fusionsanlage ASDEX Upgrade vorbereitet. Mit DIM-II können Teile des Divertors untersucht und ausgetauscht werden, ohne das Plasmagefäß zu öffnen. Damit lassen sich Plasma-Material-Wechselwirkungen an den Prallplatten untersuchen und Konzepte für aktiv gekühlte Prallplatten testen. mehr

Strukturerhaltende Numerik in der Plasmaphysik

2016 Kraus, Michael
Plasmaphysik
Zahlreiche Eigenschaften eines Plasmas, die experimentell nicht oder nicht im Detail zugänglich sind, können nur in Computersimulationen systematisch untersucht werden. Viele Codes nutzen aber numerische Methoden, die wichtige Eigenschaften der mathematischen Gleichungen nur unzureichend berücksichtigen. Die Folge ist, dass wichtige Phänomene in Simulationen nicht reproduziert werden können. Abhilfe könnten sogenannte strukturerhaltende Integrationsmethoden schaffen. Sie kombinieren Ideen aus Numerik, Physik und Geometrie und ermöglichen realistischere Simulationen als klassische Verfahren. mehr

Entwicklung von Bolometern für ITER

2015 Meister, Hans
Plasmaphysik
Der internationale Experimentalreaktor ITER, der erstmals ein gezündetes und Energie lieferndes Plasma erzeugen soll, stellt an die Entwicklung von Diagnostiken besondere Anforderungen. Die Bolometer – Strahlungsdetektoren zur Messung von Wärme- bis Röntgenlicht aus dem ITER-Plasma – werden derzeit am Max-Planck-Institut für Plasmaphysik in Garching entwickelt. mehr
Mit ihrem axialsymmetrischen Magnetfeldkäfig erreichen Fusionsanlagen vom Typ Tokamak ausgezeichneten Einschluss und hohen kinetischen Druck des Plasmas. Jedoch führen die hohen Druckgradienten am Plasmarand zu Instabilitäten, die kurzzeitig heißes Plasma auf die umgebende Wand werfen. Im Tokamak ASDEX Upgrade in Garching werden diese „Edge Localised Modes”  intensiv untersucht: Ein kleines, nicht-axialsymmetrisches Störfeld kann den schnellen Energieverlust des Plasmas und die stoßweise Belastung der Wand stark verringern, ohne den günstigen Plasma-Einschluss zu beeinträchtigen. mehr
In den Hochtemperatur-Plasmen von Tokamakfusionsexperimenten wird der radiale Transport durch Mikro-Turbulenz erzeugt, auf Skalen von Ionen- und Elektronen-Larmorradius. Um den turbulenten Transport zu verstehen, muss die Beziehung zwischen den theoretisch vorhergesagten turbulenten Transportmechanismen und den makroskopisch beobachteten Verhaltensweisen der Plasmaprofile geklärt werden. Die wichtigsten Ergebnisse dieser theoretischen und experimentellen Forschungen, die am Max-Planck-Institut für Plasmaphysik durchgeführt werden, werden vorgestellt. mehr

Spröder Werkstoff wird pseudoduktil: Wolframfaserverstärktes Wolfram

2013 Riesch, Johann; You, Jeong-Ha; Höschen, Till; Linsmeier, Christian
Plasmaphysik
Mit wolframfaserverstärktem Wolfram wird im Bereich „Plasmarand und Wand“ des MPI für Plasmaphysik eine neue Klasse von Wolframwerkstoffen entwickelt. Dabei werden Wolframfasern mit einer Matrix aus Wolfram kombiniert. Gezielt erzeugte Mechanismen der Energieumverteilung führen zu einer Steigerung der Zähigkeit, sogenannter Pseudoduktilität. Mit der Entwicklung einer Methode der chemischen Infiltrationstechnik für Wolfram konnte der Werkstoff erstmals hergestellt werden. Mit fortschrittlichen Untersuchungsmethoden, wie Röntgenmikrotomographie, wurde die Zähigkeitssteigerung nachgewiesen. mehr

ELISE – Negative Wasserstoffionen für die Neutralteilchenheizung an ITER

2012 Fantz, Ursel; Franzen, Peter; Heinemann, Bernd
Plasmaphysik
Mit ELISE, dem derzeit weltgrößten Ionenquellenteststand für negativ geladene Wasserstoffionen, trägt das Max-Planck-Institut für Plasmaphysik in Garching wesentlich zu dem internationalen Fusionsexperiment ITER in Cadarache bei. Seit zwei Jahren im Bau, wird ELISE im Juni 2012 den Betrieb aufnehmen. Sie soll die physikalischen Parameter, die für Heizung und Langzeitbetrieb des Fusionsplasmas notwendig sind, weltweit erstmalig demonstrieren. Die Ionenquelle soll einen 20 A starken Teilchenstrom negativ geladener Deuteriumionen bei halber ITER-Quellengröße für eine Stunde stabil liefern. mehr

Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade

2011 Zohm, Hartmut; Stober, Jörg
Plasmaphysik
Das bisher vorwiegend zur Elektronenheizung in Fusionsplasmen eingesetzte Verfahren mit Millimeterwellen ist hinsichtlich der Plasmadichte begrenzt. Im Tokamakexperiment ASDEX Upgrade wurden in den letzten Jahren am Max-Planck-Institut für Plasmaphysik (IPP) in Garching Verfahren entwickelt, die eine effiziente Heizung der Elektronen auch bei höheren Plasmadichten ermöglichen. Sie sind nicht nur wichtig für die Erweiterung des Betriebsbereiches von ASDEX Upgrade, sondern könnten auch am Stellarator Wendelstein 7-X eingesetzt werden, der zurzeit im IPP-Teilinstitut Greifswald gebaut wird. mehr

Neue Materialien für extreme Belastungen

2010 Linsmeier, Christian
Materialwissenschaften Plasmaphysik
Neue Materialien, die stärksten Belastungen gewachsen sind, entwickelt das Forschungsprogramm ExtreMat – „Materialien für extreme Belastungen“, ein Integriertes Projekt der Europäischen Union. Unter Leitung des Max-Planck-Instituts für Plasmaphysik in Garching arbeitet ein europäisches Forschungs- und Industriekonsortium daran, innovative Höchstleistungsmaterialien zu entwickeln. Sie sollen neue Anwendungsbereiche in Energietechnik, Elektronik und Raumfahrt erschließen. mehr

Tokamak-Betrieb mit Wolfram als Wandmaterial

2009 Kallenbach, Arne
Quantenphysik
Um die Eignung als Wandmaterial für ein Fusionskraftwerk zu testen, ist die innere Wand des Plasmagefäßes von ASDEX Upgrade mit Wolfram beschichtet. Ohne Borierung der Wand war im Vergleich zum Konkurrenzmaterial Kohlenstoff eine stark reduzierte Speicherung von Wasserstoff festzustellen. Nach Borierung zeigten sich niedrige Plasma-Strahlungsverluste, wie sie in einem Kraftwerk erwartet werden. Zur Erhöhung der Verluste wurde Stickstoff eingeblasen: Es stellte sich die gewünschte thermische Entlastung des Divertors ein sowie eine – unerwartete – Verbesserung des Plasma-Energieeinschlusses. mehr
Es werden Experimente zur Photoionisation freier Cluster mit Synchrotronstrahlung beschrieben. Änderungen der elektronischen Struktur bei der Kondensation von Monomeren zu Clustern können Durch Elektronenspektroskopie sichtbar gemacht werden. Nach der Photoionisation im Cluster zurückbleibende Energie kann durch Emission sekundärer Elektronen abgegeben werden, wozu ein ultraschneller Energieübertrag zwischen Atomen oder Molekülen im Cluster stattfindet. mehr

Die Physik schneller Teilchen in Fusionsplasmen

2008 Guenter, Sibylle; Lauber, Philipp; Strumberger, Erika
Plasmaphysik
Die Effizienz eines zukünftigen Fusionskraftwerks hängt unter anderem entscheidend davon ab, wie gut die hochenergetischen Fusionsprodukte, also die schnellen Helium-Kerne, im Magnetfeld eingeschlossen werden. Ein aktueller Forschungsschwerpunkt ist es, den Transport dieser super-thermischen Teilchenpopulation qualitativ und quantitativ zu verstehen. Dabei sind sowohl großskalige interne und externe Magnetfeldstörungen als auch von den schnellen Teilchen selbst getriebene Instabilitäten wichtige Mechanismen, deren Eigenschaften experimentell und numerisch untersucht und für das Forschungsexperiment ITER vorhergesagt werden müssen. mehr

Chemische Erosion und amorphe Kohlenwasserstoffschichten

2007 Fussmann, Gerd; Bohmeyer, Werner
Materialwissenschaften Plasmaphysik
Als Wandmaterialien für das Plasmagefäß von Fusionsanlagen, insbesondere für ITER, werden unterschiedliche Materialien – Wolfram, Beryllium und faserverstärkte Graphite – diskutiert, die unterschiedliche Vor- und Nachteile aufweisen. Genauer untersucht wurden Graphit. Nachteilig ist hier die Abscheidung amorpher Kohlenwasserstoffschichten auf den Gefäßwänden, die im Prinzip jedoch vermieden werden können. mehr
Ein geeignetes Betriebsszenario für ein Fusionskraftwerk sollte hohe Wärmeisolation des heißen Plasmas mit guten Stabilitätseigenschaften verbinden. Um beide Größen gleichzeitig zu optimieren, muss man die zu Grunde liegenden Mechanismen verstehen, d.h. das nichtlineare Zusammenspiel von turbulentem Teilchen- und Energie-Transport mit großskaligen Instabilitäten. Ein Beispiel ist die an ASDEX Upgrade entdeckte „Improved H-Mode“. mehr

Kohlenstoff und die Plasma-Wand-Wechselwirkung

2006 Jacob, Wolfgang
Materialwissenschaften Plasmaphysik
Der Bereich Materialforschung des IPP untersucht Prozesse der Plasma-Wand-Wechselwirkung in Fusionsanlagen. In diesem Bericht werden Experimente in der Apparatur MAJESTIX dargestellt. Mit ihr werden mikroskopische Prozesse untersucht, die bei der Wechselwirkung von Wasserstoff, Kohlenwasserstoffradikalen und Ionen mit Kohlenstoffoberflächen eine Rolle spielen. Solche Prozesse sind für die Plasma-Wand-Wechselwirkung in Fusionsanlagen von besonderer Bedeutung. mehr

Entwicklung einer Hochfrequenz-Ionenquelle für ITER

2005 Speth, Eckehart
Quantenphysik
Im IPP-Bereich Technologie in Garching läuft zur Zeit ein Entwicklungsprogramm für eine neuartige Ionenquelle zur Plasmaheizung des internationalen Testreaktors ITER mit energiereichen Neutralteilchenstrahlen. Ausgangspunkt hierzu sind, anders als für bisherige Fusionsanlagen, Strahlen aus negativen Ionen. Die Erzeugung, Beschleunigung und anschließende Neutralisation negativer Wasserstoff-Ionen, die im Unterschied zu positiven Ionen sehr fragile Gebilde sind, ist in physikalischer und technischer Hinsicht eine große Herausforderung. Für ITER verlangt sind zudem hohe Teilchenenergien nahezu im Dauerbetrieb. Die bisherigen Ergebnisse zeigen jedoch, dass die Hochfrequenz-Quelle des IPP auf dem besten Wege ist, als Kandidat für ITER in Betracht gezogen zu werden. mehr

Datenanalyse mithilfe der Bayes’schen Wahrscheinlichkeitstheorie

2004 Dose, Volker
Mathematik Plasmaphysik
Die Datenanalyse mithilfe der Bayes’schen Wahrscheinlichkeitstheorie ist einer der Beiträge des IPP zur institutsübergreifenden Forschungsinitiative "Centre for Interdisciplinary Plasma Science" (IPP/MPE). Dabei handelt es sich um die optimale Lösung schlecht gestellter oder gar unterbestimmter inverser Probleme. Aus dem Spektrum der bearbeiteten Probleme wird je ein Beispiel aus der Plasmaphysik, der Astronomie und der Klimaforschung vorgestellt. mehr

Wolfram als Wandmaterial im Tokamak ASDEX Upgrade

2004 Neu, Rudolf
Materialwissenschaften Plasmaphysik
Im Fusionsexperiment ASDEX Upgrade wurde ein großer Teil der plasmabelasteten Wandkomponenten durch wolframbeschichtete Ziegel bedeckt. ASDEX Upgrade ist damit weltweit die einzige Anlage, die Wolfram (W) als Wandmaterial in größerem Umfang untersucht. Wie bereits im Wolfram-Divertor-Experiment (siehe MPG-Jahrbuch 1996) konnte gezeigt werden, dass in kraftwerksrelevanten Entladungen nur sehr geringe Mengen dieses Wandmaterials in das Plasmazentrum eindringen. Daneben wurden die Vorgänge aufgeklärt, die zur Anhäufung des Wolframs im Zentrum führen können, und Methoden entwickelt, dies aktiv zu verhindern. Diese Ergebnisse legen nahe, dass Wolfram als Prallplattenmaterial auch für das geplante internationale Fusionsexperiment ITER eine attraktive Lösung sein kann. Darüber hinaus wurden die Grundlagen für den großflächigen Einsatz von Wolfram in einem künftigen Kraftwerk geschaffen. Weitere Studien in ASDEX Upgrade sollen das Verhalten eines Fusionsexperiments ohne Wandkomponenten aus Kohlenstoff klären. mehr
Zur Redakteursansicht