Max Planck Institute for Solar System Research

Max Planck Institute for Solar System Research

The name itself actually precisely describes its field of research: the Max Planck Institute for Solar System Research. The scientists in Göttingen focus on Earth's cosmic neighbourhood – the Sun, the planets and their moons, as well as a variety of small bodies. They look into the heart of the star that keeps us alive, investigate its gaseous envelope, the solar magnetic field and the high-energy particles which our Sun ejects into space. The surfaces of the planets and their different “spheres” – atmospheres, ionospheres and magnetospheres – their rings and satellites, as well as comets and planetoids are further subjects for physical models and numerical simulations. And since the objects are not that far away, astronomically speaking, the Max Planck researchers love to take a look around for themselves – not in person, but by using international space probes and landers, for which they develop and build instruments and detectors.


Justus-von-Liebig-Weg 3
37077 Göttingen
Phone: +49 551 384 979-0
Fax: +49 551 384 979-240

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Solar System Science

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Physics of planets and comets


Department Physics of the interior of the Sun and Sun-like stars


Department Solar physics and heliosphere

A unique look at Saturn's ravioli moons

Measurements from the last phases of the Cassini mission show how dynamic processes in the Saturnian system shape the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus.

New radiation belt discovered at Saturn

First results from Cassini’s final mission phase show protons of extreme energies between the planet and its dense rings

A new twist on stellar rotation

Researchers use oscillations to determine how distant suns circle around their axes

Giant swirls on the Sun

The waves that now have now been found on the Sun are similar to those controlling weather on Earth

A deep look into the hearts of stars

Researchers measure the inner structure of distant suns from their pulsations


Small bodies orbiting the Sun are either comets or asteroids – for many years, this was the official line in textbooks. At the Max Planck Institute for Solar System Research in Goettingen, essica Agarwal is studying “active asteroids”, small solar system bodies that don’t quite fit into the traditional categories.

A space probe has journeyed to Ceres for the first time. Scientists from the Max Planck Institute for Solar System Research in Göttingen are using its two onboard cameras to explore the dark surface of the dwarf planet. They have already discovered signs of frozen water – but is there also an ocean slumbering deep below the craters?

Snow formed from iron or metallic hydrogen – both of these phenomena can drive magnetic fields. Measuring them provides researchers with insights into the processes that change the internal mechanisms of the planets. Ulrich Christensen, Director at the Max Planck Institute for Solar System Research in Göttingen, investigates the broad diversity of these magnetic fields.

Although the comparison with the manned moon landing may appear somewhat exaggerated, Rosetta is undoubtedly one of space travel’s most daring enterprises: For the first time in history, a probe is accompanying a comet on its orbit around the Sun – and in mid-November, it set down the Philae lander on its surface. Scientists from the Max Planck Institute for Solar System Research in Göttingen have front row seats for the evaluation of the images and data from the comet named 67P/Churyumov-Gerasimenko.

The Sun – A Mercurial Star

4/2014 Environment & Climate

The Sun is the Earth’s principal source of energy and climate driver. Yet sometimes it sends more light to the Earth than other times. Astronomers working with Natalie Krivova at the Max Planck Institute for Solar System Research in Göttingen take these fluctuations in solar radiation into account in their models to find out whether they contribute to global warming or counteract it.

It was a historic event for researchers and a spectacle for the media: On the eve of March 14, 1986, the Giotto space probe hurtled past Halley’s Comet at a distance of 600 kilometers and sent back measurement data and close-ups of the nucleus. More than 220 European scientists were involved in the project, including 22 from Max Planck institutes.

Mechanical Engineer (f/m/d)

Max Planck Institute for Solar System Research, Göttingen April 16, 2019

Post-doctoral position in Computational Astrophysics

Max Planck Institute for Solar System Research, Göttingen March 12, 2019

Exploration of dwarf planet Ceres 

2019 Nathues, Andreas; Christensen, Ulrich R.

Astronomy Astrophysics

The exploration of the conditions that have prevailed in the early Solar System was the goal of NASA’s Dawn mission [1] for which MPS provided two structurally identical cameras. Dawn initially explored the asteroid Vesta followed by Ceres. The mission phase at Ceres has led to remarkable discoveries. Water ice is present both on the surface and in the interior of Ceres and has modified their mineral composition. In addition, cryomagmatic activity was proven.


Solar variability and climate

2018 Krivova, Natalie; Yeo, Kok Leng; Solanki, Sami K.; Wu, Chi-Ju

Astronomy Astrophysics

The Sun supplies Earth with light and warmth. It is an unfailing but not fully constant energy source. About 40 years of space-based monitoring of solar irradiance revealed its variations on all time scales that have ever been observed (minutes to decades). The variability on time scales of about a day or longer is driven by the restless solar magnetic field. Knowing how the surface magnetic field changed in the past, it is possible to reconstruct variations in the solar brightness.


Sunrise for six days

2017 Riethmüller, Tino L.; Barthol, Peter; Solanki, Sami K.

Astronomy Astrophysics

Lifted by a huge helium-filled balloon, the solar observatory Sunrise has already carried out two sixday long flights along the Arctic Circle. While the first flight has provided new insights into the lower atmosphere of the Sun at low magnetic activity, some selected findings of the second flight, carried out at a significantly higher solar activity level, are presented here.


Rotation and activity of Sun-like stars

2016 Nielsen, Martin B.; Gizon, Laurent

Astronomy Astrophysics

The origin of magnetic spots on stars like the Sun is not understood. Stellar rotation is a key ingredient in models of stellar magnetism. Five Sun-like stars observed by the Kepler space telescope are found for which both the internal rotation rate (using asteroseismology) and the surface rotation rate (using starspots) could be measured. Together these measurements show that the difference between surface and internal rotation in these stars is small, as in the Sun. The upcoming PLATO space mission will allow to apply this analysis to many thousands of sun-like stars.


Rosetta and Philae at comet 67P/Churyumov-Gerasimenko

2015 Boehnhardt, Hermann

Astronomy Astrophysics

Since summer 2014 Rosetta explores comet 67P/Churyumov-Gerasimenko. In November 2014 the Philae lander landed on the surface of the comet. The first measurements of the scientific instruments allow conclusions on the formation of small bodies in the early phase of solar system formation, on cometary activity and on the importance of comets for the existence of water on Earth.

Go to Editor View