Max-Planck-Institut für Herz- und Lungenforschung

Max-Planck-Institut für Herz- und Lungenforschung

Am Max-Planck-Institut für Herz- und Lungenforschung untersuchen Wissenschaftler den Aufbau und die Funktionsweise von Herz, Blutgefäßen und Lunge. Ihre Erkenntnisse sollen unter anderem dazu beitragen, Erkrankungen dieser Organe besser zu verstehen und Behandlungsmöglichkeiten zu entwickeln. So erforschen die Wissenschaftler, wie die Zellen des Herz-, Blutgefäß- und Lungengewebes untereinander kommunizieren und welche Signalmoleküle ihre Funktion beeinflussen. Darüber hinaus beschäftigen sie sich mit der Frage, wie geschädigtes Gewebe wieder funktionstüchtig werden kann. Stammzellen – also Vorläuferzellen, aus denen spezialisierte Herz-, Gefäß- oder Lungenzellen entstehen können – sind deshalb ebenfalls ein wichtiges Forschungsfeld am Institut. Diese Stammzellen könnten künftig beispielsweise dazu beitragen, Gewebeschäden bei Herzinfarkt-Patienten oder Menschen mit Lungenerkrankungen zu minimieren.

Kontakt

Ludwigstr. 43
61231 Bad Nauheim
Telefon: +49 6032 705-0
Fax: +49 6032 705-1604

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Heart and Lung Research

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

Vom mechanischen Reiz zur biologischen Antwort - der Kationenkanal PIEZO 1 reguliert Freisetzung von Adrenomedullin

mehr
Frühester Zeitpunkt der Entstehung des Lymphsystems entdeckt

Lymph-Endothel hat gleichen embryonalen Ursprung wie Skelettmuskulatur

mehr
Wenn Lungenzellen aus der Puste kommen

RASSF1A und HIF-1alpha stimulieren Warburg-Effekt bei Krebs und Lungenhochdruck

mehr
Gendefekte ohne Folgen

mRNA fehlerhafter Gene schiebt Kompensationsmechanismus an

mehr
Krebs durch entartete adulte Stammzellen

Transkriptionsfaktoren der Dux-Familie in aktiven Muskelstammzellen lösen Entstehung von Muskeltumoren aus

mehr

An den Max-Planck-Instituten arbeiten Wissenschaftler aus 100 Ländern dieser Erde. Hier schreiben sie über persönliche Erlebnisse und Eindrücke. Mohamed El-Brolosy aus Kairo ist Doktorand am Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim. Er spricht über kulturelle und strukturelle Unterschiede zwischen Deutschland und Ägypten, erklärt, wie bürokratische Hürden die Forschung in Ägypten behindern können und wie Karate ihm dabei hilft, sein Deutsch zu verbessern.

Molche besitzen die geradezu magische Fähigkeit, zerstörtes Gewebe zu regenerieren. Das macht sie einzigartig unter den Wirbeltieren. Thomas Braun vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim will von den Lurchen lernen, wie ein Organismus komplette Organe ersetzen kann. Vielleicht gelingt es so eines Tages, auch beim Menschen das Regenerationsvermögen zu steigern.

Momentan sind keine Angebote vorhanden.

Deubiquitinierende Proteine regulieren den Notch-Signalweg

2018 Potente, Michael

Entwicklungsbiologie Genetik Physiologie

Der Notch-Signalweg ist ein hoch konservierter Zell-Zell-Kommunikationsmechanismus, der die Entwicklung und Funktion von Geweben und Organen steuert. Wir konnten mit dem Enzym USP10 einen neuen Regulator dieses Signalwegs identifizieren, der insbesondere für das Wachstum neuer Blutgefäße relevant ist. Die Aufklärung des molekularen Mechanismus bringt neue Einsichten in die Biologie des Blutgefäßwachstums. Er könnte auch für andere physiologische und pathologische Prozesse Bedeutung haben, bei denen der Notch-Signalweg eine wichtige Rolle spielt.

mehr

Atemtest ermöglicht frühe Diagnose von Lungenkrebs

2017 Barreto, Guillermo

Entwicklungsbiologie Genetik Immunbiologie Medizin Physiologie

Lungenkrebs ist die weltweit häufigste krebsbedingte Todesursache. Ein Grund dafür ist, dass erste Symptome unspezifisch sind und Lungentumore daher oft erst in einem fortgeschrittenen Stadium erkannt werden. Die Max-Planck-Forscher konnten einen Test entwickeln, der Lungenkrebs bereits im Frühstadium erkennt. Er beruht auf dem molekularbiologischen Nachweis von Genen, die in Tumorzellen, nicht aber in gesunden Lungenzellen aktiv sind.

mehr

Von der Lungenentwicklung zur Lungenregeneration

2016 Ahlbrecht, Katrin; Morty, Rory E.; Samakovlis, Christos; Seeger, Werner

Entwicklungsbiologie Immunbiologie Physiologie

Das Hauptmerkmal struktureller Lungenerkrankungen ist die Behinderung des Gasaustausches aufgrund einer Fehlbildung oder Zerstörung der Lungenbläschen, der Alveolen. Heilende Therapiemöglichkeiten existieren nicht. Das Ziel neuer Therapiekonzepte ist die Wiederherstellung der intakten Lungenstruktur. Hierbei nutzen die Forscher das Wissen um die Entstehung der Alveolen in der Lungenentwicklung sowie im kompensatorischen Lungenwachstum der erwachsenen Lunge, um Zellen und Moleküle zu identifizieren, die in der erkrankten Lunge die Bildung neuer Alveolen ermöglichen können.

mehr

mikroRNAs regulieren essenzielle Funktionen im kardiovaskulären System

2015 Böttger, Thomas

Medizin Physiologie Zellbiologie

Die primäre Funktion von mikroRNAs (miRNAs) besteht darin, die Genexpression von spezifischen Zielproteinen posttranskriptionell zu unterdrücken. Die funktionelle Analyse von miRNA-Funktionen in vivo ermöglicht faszinierende Einblicke in komplexe Regulationsvorgänge. Eine Arbeitsgruppe am MPI für Herz- und Lungenforschung untersucht, wie miRNAs molekulare Regulationsvorgänge in den kontraktilen Zellen des kardiovaskulären Systems vermitteln. Die Arbeiten geben auch Aufschluss über die Entwicklung und Physiologie des Herz-Kreislauf-Systems.

mehr

G-Proteine und ihre Signalwirkung im Herz-Kreislauf- und Immunsystem

2014 Wettschureck, Nina

Entwicklungsbiologie Evolutionsbiologie Genetik Immunbiologie Infektionsbiologie Medizin Physiologie

Ziel einer Arbeitsgruppe am MPI für Herz- und Lungenforschung ist es, die G-Protein-vermittelten Signalwege im Herz-Kreislauf-System und im Immunsystem zu verstehen. Es sind vor allem die heterotrimeren G-Protein-Familien Gq/G11 und  G12/G13, die hier intrazellulär vermitteln. Zu den Arbeiten gehört die Identifizierung neuer Rezeptoren, die diese Signalwege aktivieren, sowie die Aufklärung der nachgeschalteten intrazellulären Signalwege. Langfristiges Ziel dieser Arbeiten ist es, neue Zielmoleküle zur Behandlung chronischer Erkrankungen des kardiovaskulären Systems zu entdecken.

mehr
Zur Redakteursansicht