Yearbook 2017

Filter by institute

Around 1600, modern landscape painting blossomed as a distinct artistic genre. A research project at the Bibliotheca Hertziana explores the diverse ways in which Netherlandish artists in Rome contributed to this development. From the comparison of exemplary artistic careers, it becomes evident that the new perception of landscape did not only result from an intensive study of nature, but also from the cultural exchanges catalyzed by the experience of migration. more
Haploid gametes are produced in meiosis, a special form of cell division where DNA replication is followed by two rounds of chromosome segregation and gametogenesis. Homologous chromosomes segregate in meiosis I, whereas chromatids disjoin in meiosis II. Scientists of the research group Chromosome Biology now revealed how the conserved Hrr25 kinase of yeast coordinates production and packaging into gametes of the single-copy genome in meiosis II. more
Faithful distribution of the genetic material during cell division relies on the folding of DNA into discrete and compact bodies called chromatids. SMC protein complexes have evolved to deal with the tangly nature of long DNA molecules. They act as molecular clamps that bring together selected DNA segments. The researchers determined the architecture of the ancestral SMC complex and elucidated its dynamic localization on the bacterial chromosome. The results indicate that SMC rings are not merely DNA linkers but active machines, which step-by-step enlarge DNA loops to organize chromosomes. more
Plants harvest energy from sunlight and store it in chemical compounds. These substances are the primary food source for other life forms and make plants the basis of all life on Earth. Plants also play an essential role in regional and global element and energy cycles and buffer changes in atmospheric carbon dioxide concentrations from anthropogenic sources. Like small business companies, they have to manage and allocate resources to optimize fitness and survival. In the research group Plant Allocation, novel methods are developed and employed to derive plant resource management strategies. more
Pluripotent stem cells represent an amazing tool box for generating virtually any cell tissue of the human body such as, for instance, spontaneously beating cardiac muscle tissue. How this actually works and how the process can be controlled better was recently revealed. Two regulatory switches inside the cells need to be manipulated at the right time. This surprisingly simple procedure may be used for studying the mechanisms underlying genetic cardiac disorders and for evaluating putative drugs. more
Ageing is not a random process. Biological ageing processes are instead regulated by metabolic and genetic mechanisms. Single gene mutations can markedly extend the life span of various organisms. The biology of ageing can be investigated in simple yeast cells, flies, round worms, and also in mice. Gene mutations that extend life span also protect against age-associated diseases such as neurodegeneration, cancer, heart disease, and diabetes. A deeper understanding of molecular mechanisms of longevity can open new avenues for therapies or prevention of these highly relevant diseases. more

Structure of dimeric ATP synthase from the inner membrane of yeast mitochondria

Max Planck Institute of Biophysics Hahn, Alexander; Parey, Kristian; Bublitz, Maike; Mills, Deryck J.; Zickermann, Volker; Vonck, Janet; Kühlbrandt, Werner; Meier, Thomas
We determined the structure of a complete, dimeric F1Fo-ATP synthase from mitochondria of the yeast Yarrowia lipolytica by a combination of cryo-electron microscopy (cryo-EM) and X-ray crystallography. The structure resolves 58 of the 60 subunits in the dimer. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Our data explain the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. more
Recent technological advancement has opened up a new era of neuroscience research to acquire large-scale datasets from the brain, and to model and interpret them by novel analytical techniques and algorithms. Here, computational and mathematical approaches are used to understand how neural activity shapes circuit organization and dynamics. The focus lies on neural circuits that enable animals to navigate to a desired location in space.   more
Go to Editor View