Bakterien sind Individualisten

Zellen reagieren auf Nährstoffmangel unterschiedlich

Bakterium ist nicht gleich Bakterium – selbst wenn sie genetisch genau gleich sind. Eine neue Studie des Schweizer Forschungsinstituts Eawag, der ETH Zürich, der EPFL Lausanne und des Max-Planck-Instituts für marine Mikrobiologie in Bremen zeigt, unter welchen Bedingungen bei Bakterien Individualisten entstehen und wie diese dann das Wachstum der ganzen Gruppe in schwierigen Zeiten aufrechterhalten.

Einzelne Zellen des Bakteriums Klebsiella oxytoca. Die unterschiedliche Färbung zeigt, dass die genetisch gleichen Zellen einer Population unterschiedlich viel elementaren Stickstoff (15N2) in die Zellen einbauen: Je wärmer die Färbung, desto mehr elementarer Stickstoff wurde aufgenommen).

Egal ob Mensch oder Bakterium – unsere Umweltbedingungen bestimmen, wie wir uns entwickeln können. Dabei gibt es zwei grundlegende Probleme: Welche Ressourcen stehen zur Verfügung, um zu überleben und zu wachsen, und was passiert, wenn sich die Umweltbedingungen unerwartet verändern?

Die Forschergruppe von hat nun herausgefunden, dass Bakterienpopulationen besonders viele Individualisten hervorbringen, wenn es nur begrenzt Nährstoffe gibt. Das bedeutet, dass diese Bakterienpopulationen sich nicht nur – wie meist angenommen – im Nachhinein an veränderte Umweltbedingungen anpassen. Die Individualisten können auch schon im Vorhinein auf solche Veränderungen vorbereitet sein.

Mangel befördert Vielfalt

In einer aktuellen Veröffentlichung zeigen die Forscher um Frank Schreiber, dass einzelne Zellen in Bakteriengruppen, die unter Nährstoffmangel leiden, sehr unterschiedlich reagieren können. Obwohl alle Zellen einer solchen Gruppe genetisch genau gleich sind, gehen sie ganz unterschiedlich mit den Nährstoffen in ihrer Umgebung um.

Bakterien der Art Klebsiella oxytoca nehmen bevorzugt Stickstoff in Form von Ammonium auf, denn das kostet vergleichsweise wenig Energie. Wenn nicht genügend Ammonium für alle vorhanden ist, beziehen einige Zellen der Gruppe ihren Stickstoff durch Stickstofffixierung aus elementarem Stickstoff, obwohl das deutlich aufwändiger ist. Geht nun das Ammonium plötzlich ganz aus, sind diese Zellen auf den Mangel gut vorbereitet. Auch wenn einzelne Zellen leiden, kann die Gruppe als Ganzes weiterwachsen. „Obwohl alle Individuen der Gruppe genetisch identisch sind und den gleichen Umweltbedingungen ausgesetzt waren, sind die einzelnen Zellen verschieden“, so Schreiber, der inzwischen am Wasserforschungsinstitut Eawag der ETH forscht.

Diese bemerkenswerten Unterschiede zwischen den Bakterien konnten Schreiber und seine Kollegen nur entlarven, indem sie den einzelnen Zellen ganz nah auf den Pelz rückten. „Wir mussten die Nahrungsaufnahme einzelner Bakterienzellen messen – obwohl die nur zwei Mikrometer groß sind“, erklärt Schreiber. „Üblicherweise werden in der Mikrobiologie nur die kollektiven Eigenschaften in Populationen von mehreren Millionen oder gar Milliarden von Zellen zusammen gemessen. Nur durch die enge Zusammenarbeit, die vielfältige Expertise und die technische Ausstattung der beteiligten Forschergruppen war es möglich, so ins Detail zu gehen.“

Vielfalt macht flexibel

Die vorliegende Studie belegt, wie wichtig Individualität – bei Bakterien und im Allgemeinen – in einer veränderlichen Umwelt sein kann. Unterschiede zwischen Individuen verleihen der ganzen Gruppe neue Eigenschaften und erlauben ihr so, mit schwierigen Umweltbedingungen umzugehen. „Dies deutet darauf hin, dass biologische Vielfalt nicht nur im Sinn der Artenvielfalt von Tieren und Pflanzen, sondern auch auf dem Niveau einzelner Individuen bedeutsam ist“, sagt Schreiber.

In einem nächsten Schritt wollen Schreiber und seine Kollegen nun untersuchen, ob solch individuelles Verhalten von einzelnen Bakterienzellen auch in natürlichen Lebensräumen eine wichtige Rolle spielt.

FA/HR

Weitere interessante Beiträge

Zur Redakteursansicht