In der Kinderstube von Planeten

Astronomen bestimmen die Masse der Gas- und Staubscheibe um den Stern TW Hydrae

30. Januar 2013

Die Scheibe um den jungen Stern TW Hydrae gilt als Musterbeispiel für die Kinderstube von Planeten. Wegen ihrer vergleichsweise geringen Distanz von 176 Lichtjahren spielt das Objekt eine Schlüsselrolle in kosmischen Geburtsszenarien. Mit dem Weltraumteleskops Herschel haben Forscher, unter ihnen auch Thomas Henning vom Max-Planck-Institut für Astronomie in Heidelberg, erstmals recht präzise die Masse der Scheibe bestimmt. Der neue Wert ist größer als frühere Schätzungen und zeigt, dass in diesem System Planeten ähnlich denen unseres Sonnensystems entstehen können. Nicht zuletzt sind die Beobachtungen ein Beispiel dafür, dass sich in der Wissenschaft nicht alles planen lässt.

Die Ägyptologen haben den Stein von Rosette, Genetiker die Fruchtfliege. Für Astronomen, die sich mit der Geburt von Planeten befassen, ist TW Hydrae in der Konstellation Wasserschlange (lat. Hydra) der Schlüssel zu ihrem Fachgebiet: ein junger Stern mit ungefähr derselben Masse wie die Sonne, umgeben von einer protoplanetaren Scheibe aus dichtem Gas und Staub, in der kleine Partikel zu immer größeren Gebilden zusammenklumpen, bis am Ende ganze Planeten entstehen. Auf ähnliche Weise hat sich vor mehr als vier Milliarden Jahren auch unser Sonnensystem gebildet.

Die Scheibe um TW Hydrae liegt nur 176 Lichtjahren von der Erde entfernt – alle anderen uns bekannten Scheiben haben die mehr als zweieinhalbfache Distanz – und lässt sich daher sehr detailliert beobachten. Zwar können die Astronomen von dem Objekt aufgrund der Größenverhältnisse keine direkten Bilder anfertigen; aber indem sie das Lichts des Systems bei unterschiedlichen Wellenlängen untersuchen und die dabei gewonnenen Spektren mit Modellen vergleichen, erschließen die Forscher wichtige Eigenschaften.

Wenngleich TW Hydrae aus den genannten Gründen eine der am häufigsten beobachteten und am gründlichsten untersuchten protoplanetaren Scheiben überhaupt besitzt, war einer ihrer grundlegenden Parameter bisher nur sehr ungenau bekannt: die Masse des enthaltenen Gases aus Wasserstoffmolekülen. Dieser Wert wiederum gestattet es den Wissenschaftlern abzuschätzen, wie viele und welche Sorten von Planeten dort entstehen können. Versuche, die Masse des molekularen Wasserstoffs zu bestimmen, hingen empfindlich von den verwendeten Modellen ab. Daher umfassten bisherige Abschätzungen einen vergleichsweise großen Bereich und variierten zwischen einer halben und mehr als 60 Jupitermassen.

Die neuen Messungen nutzen die Tatsache, dass es bei den Wasserstoffmolekülen selbst subtile Unterschiede gibt: Einige wenige Moleküle bestehen nicht aus zwei normalen Wasserstoffatomen, sondern enthalten ein Deuteriumatom; der Atomkern von Wasserstoff besteht nur aus einem einzigen Proton, Deuterium hingegen besitzt ein zusätzliches Neutron. Wegen dieses feinen Unterschieds ist die Infrarotstrahlung, die mit der Rotation der Moleküle zusammenhängt, bei diesen Wasserstoffdeuterid-Molekülen ungleich stärker als bei normalen Wasserstoffmolekülen.

Das Satellitenteleskop Herschel der europäischen Raumfahrtagentur ESA bietet im Wellenlängenbereich dieser Strahlung eine sonst unerreichbare Kombination aus Empfindlichkeit und spektraler Auflösung. Unter diesen Voraussetzungen gelang es den Astronomen nun, die ungewöhnlichen Moleküle nachzuweisen. Das Ergebnis ist zehnfach genauer als alle vorigen Massenbestimmungen: Danach muss die Scheibe eine Mindestmasse von rund 52 Jupitermassen haben.

Altersschätzungen für TW Hydrae führen auf Werte zwischen drei und zehn Millionen Jahre, was für Sternsysteme mit Scheibe relativ viel ist. Die neuen Massenmessungen zeigen, dass trotz des hohen Alters noch genügend Materie existiert, um ein Planetensystem größer als unseres entstehen zu lassen. Mit anderen Worten: Unser Sonnensystem ist aus einer deutlich masseärmeren Scheibe hervorgegangen.

Auf dieser soliden Grundlage und unter Einbeziehungen weiterer Eigenschaften wie der Temperaturverteilung, die sich aus Folgebeobachtungen mit dem Teleskopverbund ALMA in Chile noch deutlich genauer erschließen lassen sollte, wird es in Zukunft möglich sein, weit realistischere Modelle für die Scheibe von TW Hydrae zu entwickeln. Der Vergleich dieser Modelle mit den Beobachtungsdaten wiederum sollte es erlauben, die gängigen Theorien der Planetenentstehung auf die Probe zu stellen.

Die Beobachtungen sind auch deswegen interessant, weil sie Einblicke in den Wissenschaftsbetrieb bieten: Nach den Worten von Thomas Henning, Direktor am Heidelberger Max-Planck-Institut für Astronomie, begann das Projekt in einem Gespräch zwischen Ted Bergin, Ewine van Dieshoek und ihm. „Uns wurde klar, dass Herschel unsere einzige Möglichkeit war, um Wasserstoffdeuterid in dieser Scheibe zu beobachten – und damit eine Chance, die wir uns nicht entgehen lassen konnten“, sagt Henning.

Man habe aber auch gemerkt, dass man mit diesen Beobachtungen ein Risiko eingehen würde: „Eine der Modellrechnungen sagte voraus, dass wir mit Herschel überhaupt nichts sehen würden. Stattdessen waren unsere Beobachtungsdaten am Ende besser, als wir zu hoffen gewagt hatten“, so der Max-Planck-Forscher.

TW Hydrae ist damit ein Lehrstück für Gremien, die Forschungsmittel oder, wie in der Astronomie üblich, Beobachtungszeit an großen Teleskopen vergeben – und die dabei im ungünstigsten Falle so konservativ vorgehen, dass Antragssteller fast garantieren müssen, dass ihr Projekt erfolgreich verlaufen wird. Thomas Henning: „Wenn nicht die geringste Chance besteht, dass ein Projekt schiefgeht, dann dürfte es wissenschaftlich nicht besonders interessant ein. TW Hydrae ist ein Paradebeispiel dafür, wie es sich in der Wissenschaft lohnen kann, ein kalkuliertes Risiko einzugehen.“

HOR / MP

Zur Redakteursansicht