Related articles

Astronomy . Astrophysics

Matter raining from the parent clouds

As the brown dwarfs shrink and cool down, however, the properties of the gases composed of free electrons change: they degenerate, as physicists say. This state has a peculiar feature: the temperature becomes decoupled from the pressure and density, and the star is able to cool down without the pressure dropping. The star remains stabilized, and therefore does not vanish as a small black hole; instead, it becomes progressively colder and darker.

But back to stars of normal weight. A few million years after birth, the young star checks the deluge of matter from its parent cloud by means of increasingly intense radiation and a rising wind of charged particles that it spits off its surface into space. With these mechanisms, the star avoids a further increase in mass and reaches the nuclear fusion phase. At this point, it enters the main sequence in the Hertzsprung-Russell diagram (see the box “Stellar Class Society”).

A star might be expected to respect its place in this society forever, according to its initial mass. But this is by no means the case. The population density in the Hertzsprung-Russell diagram (HRD) reflects the relative frequency with which individual star types occur at a particular point in time. If, however, the data from the same stars were to be entered in an HRD every couple hundred thousand years, and the measurements repeated over a period of several billion years, we would notice movement: in the resulting time-lapse movie, some stars would enter the main sequence and remain in it for a long time, only to leave it very quickly toward the giant sequence, finally “crashing” into the dwarfs. In other words, stars are by no means static plasma spheres – they develop. “I am interested in these differences in stars’ biographies for my calculations,” says Max Planck researcher Weiss.

Let us consider a star of the same type as our Sun. Nuclear fusion functions smoothly only when the external conditions such as pressure, density and temperature are right, and sufficient fuel is also available. At this point, the Sun has consumed about half of the hydrogen at its core by nuclear fusion; around 70 percent of its mass lies within half the solar radius of 350,000 kilometers. Over time, the hydrogen reserves are completely exhausted, and increasing quantities of helium collect at the heart of the Sun until it consists entirely of helium, something that will happen in around six billion years’ time. Since the Sun is already four and a half billion years old, it will have had a fairly stable life of ten billion years by that point.

When hydrogen burning at the Sun’s center ceases, the star has a problem. It loses energy, but tries to maintain the hydrostatic equilibrium. Fusion in the interior no longer delivers energy. The Sun uses a trick to compensate for this deficit: the core begins to contract, and converts gravitational energy into heat. In the process, it heats up, becoming so hot that the layers outside the burnt-out core reach a sufficiently high temperature to maintain the hydrogen fusion. Calculations show that this burning of the shell eats its way progressively outward over time. And something is also happening on the inside: the core contracts further still and heats up so much that, ultimately, the helium ignites.

 

 
loading content