Ansprechpartner

Dr. Holger Sierks

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-242

Dr. Birgit Krummheuer

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-462

Originalveröffentlichung

H. Sierks et al.
Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System
Science, 28 October 2011

Weitere Artikel

Eine Kamera des Max-Planck-Instituts für Sonnensystemforschung fotografiert den Planetoiden Lutetia aus nächster Nähe.

Faszinierende Bilder aus einer neuen Welt

11. Juli 2010

Eine Kamera des Max-Planck-Instituts für Sonnensystemforschung fotografiert den Planetoiden Lutetia aus nächster Nähe. [mehr]
Mit einem Durchmesser von etwa 100 Kilometern ist Lutetia der größte Asteroid, den je eine Weltraummission besucht hat.

Rendezvous mit einem Riesenbrocken

6. Juli 2010

Mit einem Durchmesser von etwa 100 Kilometern ist Lutetia der größte Asteroid, den je eine Weltraummission besucht hat. [mehr]

Astronomie

Urgestein im All

Der Asteroid Lutetia könnte ein Überbleibsel aus der frühen Phase des Sonnensystems sein

27. Oktober 2011

Lutetia ist ein wahres Fossil: Einige Bereiche der Oberfläche des Asteroiden gehören mit einem Alter von etwa 3,6 Milliarden Jahren zu den ältesten des Planetensystems. Wegen seiner hohen Dichte ist Lutetia zudem ein Planetesimal, die erste Entwicklungsstufe auf dem Weg zu einem Planeten. Zu diesen Ergebnissen kommen Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung. Das Team hat Bilder ausgewertet, welche die Raumsonde Rosetta während ihres Vorbeiflugs an Lutetia im Juli 2010 aufgenommen hatte.
Einer überdimensionalen Kartoffel gleicht der Asteroid Lutetia auf dem Bild A, das Rosetta während des Vorbeiflugs im Juli 2010 gewonnen hatte. Die Aufnahme B zeigt einen Krater mit einem Durchmesser von 21 Kilometern in der Region Baetica; die Pfeile a, b und c deuten auf Erdrutsche hin. Auf dem Bild C verdeutlichen die drei Pfeile a die gut sichtbare Grenze zwischen den Regionen Baetica und Noricum, die Pfeile b und c zeigen auf Rillenstrukturen. Im Teilbild D weisen die Pfeile auf weitere Rillen. Bild vergrößern
Einer überdimensionalen Kartoffel gleicht der Asteroid Lutetia auf dem Bild A, das Rosetta während des Vorbeiflugs im Juli 2010 gewonnen hatte. Die Aufnahme B zeigt einen Krater mit einem Durchmesser von 21 Kilometern in der Region Baetica; die Pfeile a, b und c deuten auf Erdrutsche hin. Auf dem Bild C verdeutlichen die drei Pfeile a die gut sichtbare Grenze zwischen den Regionen Baetica und Noricum, die Pfeile b und c zeigen auf Rillenstrukturen. Im Teilbild D weisen die Pfeile auf weitere Rillen. [weniger]

Vor etwa 4,5 Milliarden Jahren sah das Sonnensystem völlig anders aus als heute: Statt der acht großen Planeten drehte sich erst eine Wolke, später eine Scheibe aus Gas und Staub um die gerade entstandene Sonne. Nach und nach ballte sich diese Materie zu unregelmäßig geformten Klumpen zusammen, sogenannten Planetesimalen. Einige von ihnen verschmolzen zu noch größeren Brocken, den Protoplaneten – zwar noch kleiner als heutige Planeten, aber bereits kugelförmig und mit einer inneren Schichtstruktur. Doch das Weltall ist ein dynamischer Ort: Die meisten Planetesimale und Protoplaneten, die sich nicht zu echten Planeten weiterentwickelten, zerbrachen als Folge heftiger Zusammenstöße wieder.

„Lutetia ist für uns ein Glücksfall“, sagt Holger Sierks, Wissenschaftler am Max-Planck-Institut für Sonnensystemforschung, Leiter des OSIRIS-Kamerateams und Erstautor der jetzt in Science veröffentlichten Studie. „Denn es gibt nur wenige Himmelskörper, die aus einer solch frühen Entwicklungsphase erhalten geblieben sind. Sie erlauben uns, einen Blick zurück in die Vergangenheit zu werfen.“

Ein weiteres Beispiel ist der Asteroid Vesta, den die NASA-Raumsonde Dawn seit Juli dieses Jahres umkreist. Forscher vermuten, dass auch Vesta einer der wenigen verbleibenden Protoplaneten ist. Lutetia könnte nun einen noch weiteren Blick ermöglichen – bis zu den Wurzeln des Sonnensystems. Ihre geringere Größe, unregelmäßige Form und vor allem ihre hohe Dichte deuten darauf hin, dass es sich hier um einen Planetesimal handelt. „Aus den Aufnahmen konnten wir jetzt sehr genau das Volumen von Lutetia und dann in einem zweiten Schritt ihre Dichte bestimmen“, erklärt Sierks. Mit 3,4 Gramm pro Kubikzentimeter ist diese deutlich höher als jene von Granit.

„Die meisten anderen Kleinplaneten, die wir genauer kennen, haben eine viel geringere Dichte“, so Sierks. „Wir halten diese Asteroiden für eine Art kosmische Bruchstücke – also relativ lose, poröse Ansammlungen von Körpern aus jüngeren Zusammenstößen.“ Lutetia hingegen scheint deutlich kompakter – und somit älter – zu sein.

 
loading content