Ansprechpartner

Dr. Hagen Klauk

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon:+49 711 689-1401Fax:+49 711 689-1472
Profile_image

Prof. Dr. Klaus Müllen

Max-Planck-Institut für Polymerforschung, Mainz
Telefon:+49 6131 379-150Fax:+49 6131 379-350

Weitere Themen

Ein Computer bewahrt Daten bislang in Arbeitsteilung auf: Beim Start  lädt er sie erst von der Festplatte in den Arbeitsspeicher. Dietrich  Hesse und Marin Alexe erforschen am Max-Planck-Institut für  Mikrostrukturphysik in Halle ferroelektrische Speichermaterialien, die  das Hochfahren eines Rechners überflüssig machen würden und Daten  besonders dicht packen könnten.

Ferroelelektrika:
Digitales Gedächtnis in der Pol-Position

1. Juli 2011

Ein Computer bewahrt Daten bislang in Arbeitsteilung auf: Beim Start lädt er sie erst von der Festplatte in den Arbeitsspeicher. Dietrich Hesse und Marin Alexe erforschen am Max-Planck-Institut für Mikrostrukturphysik in Halle ferroelektrische Speichermaterialien, die das Hochfahren eines Rechners überflüssig machen würden und Daten besonders dicht packen könnten. [mehr]
Computer dienen heute als Musikbox, Filmarchiv und Fotoalbum. Sie müssen daher immer größere Datenmengen schnell zugänglich machen. Wissenschaftler des Max-Planck-Instituts für intelligente Systeme in Stuttgart und des Hallenser Max-Planck-Instituts für Mikrostrukturphysik bereiten den Weg für magnetische Speichermaterialien, die das ermöglichen, und nutzen dabei geschickt die ganz eigenen Gesetze der Nanowelt aus.

Nanospeicher bringen Computer groß raus

1. Juli 2011

Computer dienen heute als Musikbox, Filmarchiv und Fotoalbum. Sie müssen daher immer größere Datenmengen schnell zugänglich machen. Wissenschaftler des Max-Planck-Instituts für intelligente Systeme in Stuttgart und des Hallenser Max-Planck-Instituts für Mikrostrukturphysik bereiten den Weg für magnetische Speichermaterialien, die das ermöglichen, und nutzen dabei geschickt die ganz eigenen Gesetze der Nanowelt aus. [mehr]

Chemie . Festkörperforschung . Materialwissenschaften

Aromatische Chips

1. Juli 2011

Druckbar, flexibel und preiswert – diese Eigenschaften versprechen Ingenieure sich von der organischen Elektronik. Wissenschaftler des Max-Planck-Instituts für Festkörperforschung und des Max-Planck-Instituts für Polymerforschung erforschen verschiedene Materialien, aus denen sich rollbare Bildschirme oder billige Chips für Massenprodukte herstellen lassen.

Text Tim Schröder

Geldschein mit Chip: Die Transistoren, die Stuttgarter Forscher aus kleinen organischen Molekülen herstellen, arbeiten selbst auf einem rauen und geknickten Geldschein zuverlässig. Bild vergrößern
Geldschein mit Chip: Die Transistoren, die Stuttgarter Forscher aus kleinen organischen Molekülen herstellen, arbeiten selbst auf einem rauen und geknickten Geldschein zuverlässig. [weniger]

Vielleicht ist an Hagen Klauk ein Physiklehrer verloren gegangen. Auf jeden Fall kann er so gut erklären wie einer. Bei ihm erscheint der Elektronentransport durch Halbleiter plötzlich so klar und simpel wie ein Stromkreis mit Batterie und Birnchen. Klauk steht in einem weißen Overall mit Kapuze im staubfreien Reinraum. Die Lüftung surrt leise. „Ist ja klar, wenn die Moleküle im Halbleiter zu groß oder verdrillt sind, dann bleiben die Elektronen hängen und kommen kaum voran“, sagt er und dreht und beugt und streckt seine Arme. Dann steht er stramm. „Liegen die Moleküle aber fein säuberlich und eng nebeneinander, dann können die Elektronen regelrecht durchs Material sausen.“

Die Frage, wie man Elektronen auf Trab bringt, beschäftigt ihn schon seit mehr als zehn Jahren. Man könnte glauben, dass es Spannenderes gibt. Klauk aber kommt in Fahrt, wenn er von der Vision des aufrollbaren Flachbildschirms erzählt, der so dünn ist wie Overheadfolie und so bunt wie das Display eines Smartphones. „So ein Bildschirm, der ganz aus flexibler, dehnbarer Elektronik besteht, den man aufgerollt in die Tasche stecken kann; dazu versuchen wir unseren Teil beizutragen.“

Herkömmliche Displays bestehen aus Glas, auf das hauchdünn ein ungeordneter Film aus Silizium aufgedampft wird, der Elektronikwerkstoff schlechthin. Solche Displays lassen sich freilich nicht knicken. Nicht nur wegen des Glases. Auch das Silizium würde abplatzen und zerbröseln, wenn man es rollte oder faltete. Hagen Klauk interessiert sich deshalb für eine Materialklasse, die man erst seit Anfang der 1990er-Jahre so richtig ernst nimmt – Kunststoffe mit elektrischen Eigenschaften. Diese organische Elektronik besteht vor allem aus Kohlenstoff- und Wasserstoffmolekülen, den wichtigsten Ingredienzien von Kunststoffen eben. Noch aber kann es der biegsame und robuste Elektro-Kunststoff nicht mit dem Hochleistungssilizium aufnehmen – unter anderem, weil die Elektronen noch nicht schnell genug durch das Material flitzen.

Klauk und seine Kollegen haben sich auf Transistoren spezialisiert, die Kernkomponente aller elektronischen Bauteile und auch von Displays sind. Transistoren sind eine Art Stromventil. Sie regeln den Stromfluss in Mikroprozessoren oder in den winzigen Leuchtdioden von Flachbildschirmen. Klauk greift eine kleine Lupe vom Schreibtisch. „Hier, schauen Sie sich damit mal die Pixel auf meinem Smartphone an.“ Tatsächlich, das was man sonst unscharf als kleine Pünktchen auf dem Bildschirm erkennt, ist in der Vergrößerung ein perfekt geordnetes Nebeneinader von roten, grünen und blauen Strichen – winzig klein, nur Mikrometer groß. Jeder einzelne ist eine Leuchtdiode. Und jede Leuchtdiode wird von einem eigenen winzigen Transistor gesteuert. Fließt Strom, leuchtet die Diode, je nach Stromfluss heller oder dunkler. Ein großer Bildschirm bringt es auf Millionen von Transistoren. Und die bestehen bislang ausnahmslos aus aufgedampftem Silizium.

 
loading content